• Title/Summary/Keyword: GAs analysis

Search Result 9,076, Processing Time 0.035 seconds

Productivity Analysis of Gas Pressure Welding Work Using Web-CYCLONE (웹싸이클론을 이용한 가스압접공사의 생산성 분석에 관한 연구)

  • Gu, Shin-Hyuk;Kim, Yong-Woo;Lee, Dong-Eun;Huh, Young-Ki;Son, Chang-Baek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.273-275
    • /
    • 2012
  • In apartment building with column structure, reinforcing bar of the column is constructed mainly using gas pressure welding job. Therefore, gas pressure welding job in very critical process is construction apartment building with column structure. The purpose of this study is to analyze productivity of gas pressure welding work in column structure apartment using Web-CYCLONE. In this study, a CYCLONE model was developed for the productivity analysis of gas pressure welding work. Through this model, the optimal combination of the resources was obtained. This study will be utilized in the future as a useful tool of productivity analysis and the determination of an optimal combination of resources for gas pressure welding in apartment with column structure.

  • PDF

An Economic Analysis of the Natural Gas Air-conditioning (가스냉방의 경제성 분석)

  • Gim, Bong-Jin;Park, Yearn-Hong
    • IE interfaces
    • /
    • v.11 no.1
    • /
    • pp.207-214
    • /
    • 1998
  • Since the natural gas air-conditioning not only increases the base load of the gas company but also decreases the summer peak load of the electricity company, it is considerded as an efficient demand-side management program. This paper suggests the economic evaluation method of the gas air-conditioning program from the perspectives of the participants, the pipeline gas company, the local distribution company, the electricity company, and the total resources. The absorption type gas air-conditioning/space-heating is selected as a case study to illustrate the economic analysis of the natural gas air-conditioning.

  • PDF

Development of nitrogen and oxygen certified reference materials in 10 μmol/mol for the purity evaluation

  • Ahn, Byung Soo;Moon, Dong Min;Lee, Jin Bok;Kim, Jin Seog;Lee, Jin-Hong;Hong, Kiryong
    • Analytical Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.68-75
    • /
    • 2020
  • We have developed 10 μmol/mol nitrogen and oxygen certified reference materials (CRMs) in helium, as a SI-traceable gas standard for a quantifying of impurities in pure gases for the first time in Korea. The standard gas mixtures of nitrogen and oxygen were prepared in 5000 μmol/mol and sequentially were diluted to 250 μmol/mol and 10 μmol/mol according to the gravimetric preparation. In each dilution step, two cylinders of CRMs were prepared. The verification of internal consistency among the prepared gas mixtures was performed by using GC-TCD. The amount fractions and those expanded uncertainties (k = 2) of nitrogen and oxygen in the standard gas mixtures were (10.12 ± 0.08) μmol/mol and (10.18 ± 0.08) μmol/mol for nitrogen, and (9.88 ± 0.06) μmol/mol and (9.94 ± 0.06) μmol/mol for oxygen, respectively. We have conducted a purity assessment of two commercial helium gases using developed CRMs. As the results of the purity assessment, nitrogen and oxygen were detected by (1.66 ± 0.03) μmol/mol and (0.31 ± 0.02) μmol/mol, respectively, as the impurities in one of the pure helium.

Neural Network Based Dissolved Gas Analysis Using Gas Composition Patterns Against Fault Causes

  • J. H. Sun;Kim, K. H.;P. B. Ha
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.4
    • /
    • pp.130-135
    • /
    • 2003
  • This study describes neural network based dissolved gas analysis using composition patterns of gas concentrations for transformer fault diagnosis. DGA samples were gathered from related literatures and classified into six types of faults and then a neural network was trained using the DGA samples. Diagnosis tests were performed by the trained neural network with DGA samples of serviced transformers, fault causes of which were identified by actual inspection. Diagnosis results by the neural network were in good agreement with actual faults.

Seismic Pre-processing and AVO analysis for understanding the gas-hydrate structure (가스 하이드레이트 부존층의 구조 파악을 위한 탄성파 전산처리 및 AVO 분석)

  • Chung Bu-Heung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.634-637
    • /
    • 2005
  • Multichannel seismic data acquired in Ulleung Basin of East Sea for gas hydrate exploration. The seismic sections of this area show strong BSR(bottom simulating reflections) associated with methane hydrate occurrence in deep marine sediments. Very limited information is available from deep sea drilling as the risk of heating and destabilizing the initial hydrate conditions during the processing of drilling is considerably high. Not so many advanced status of gas hydrate exploration in Korea, the most of information of gas hydrate characteristics and properties are inferred from seismic reflection data. In this study, The AVO analysis using the long offset seismic data acquired in Ulleung Basin used to explain the characteristics and structure of gas hydrate. It is used primarily P-wave velocity accessible from seismic data. To make a good quality of AVO analysis input data, seismic preprocessing including 'true gain correction', 'source signature deconvolution', twice velocity analysis and some kinds of multiple rejection and enhancing the signal to noise ratio processes is carried out very carefully. The results of AVO analysis, the eight kinds of AVO attributes are estimated basically and some others of AVO attributes are evaluated for interpretation of AVO analysis additionally. The impedance variation at the boundary of gas hydrate and free gas is estimated for investing the BSR characteristics and properties. The complex analysis is performed also to verifying the amplitude variation and phase shift occurrence at BSR. Type III AVO anomaly appearance at saturated free gas area is detected on BSR. It can be an important evidence of gas hydrate deposition upper the BSR.

  • PDF

Optimization of the Gas Gas Heater Element for Desulfurization Equipment through Flow Analysis (유동해석을 통한 신형 탈황설비용 GGH 요소 최적화)

  • Ryu, B.J.;Oh, B.J.;Baek, S.G.;Kim, H.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.599-602
    • /
    • 2008
  • This paper deals with the optimization of Gas-Gas-Heater elements for desulfurization equipment through flow analysis. The flow analysis model used in the paper is ${\kappa}-{\varepsilon}$ turbulent flow model. Temperature and flow velocity distributions for three types of panel elements are calculated. Through the analysis the following conclusions are obtained. Firstly, pressure differences of between inlet and outlet for three types of panel elements do not exceed in the standard pressure difference. Secondly, it is expected that NU-type panel element having wide area of heat transfer will be more effective in the aspect of the heat transfer.

  • PDF

Dissolved Gas Analysis of Environment-Friendly Vegetable Insulating Oils (친환경 식물성 절연유의 유중가스 분석)

  • Choi, Sun-Ho;Kim, Kwan-Sik;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.4
    • /
    • pp.238-243
    • /
    • 2015
  • The vegetable insulating oils are substitute for the mineral oil in power transformer. Vegetable insulating oils has higher flash/fire point and biodegradability than conventional mineral oils. In this paper, we investigated the dissolved gas analysis of vegetable oils. In the experiment, I had to accelerated aging under the same conditions mineral oil and vegetable oils. Accelerated aging proceeded to about 100% of the life of oil-filled transformer. In addition, we performed gas analysis of insulating oil of accelerated aging progress. The experiment results of the five gases was measured with the exception of Hydrogen and Acetylene. The mineral oil and vegetable oils gas is generated in a similar tendency depending on the accelerated aging. As a result, vegetable oils, can be dissolved gas analysis by method such as mineral oil.

Development of standard gas mixtures of hydrocarbons in methane contained in aluminum cylinders (알루미늄 실린더에서 혼합 탄화수소(C6-C10) 표준가스 개발)

  • Kim, Yong-Doo;Bae, Hyun-Kil;Woo, Jin-Chun;Lee, Sangil;Oh, Sang-Hyub;Lee, Jin Hong
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.287-294
    • /
    • 2017
  • As the demand for natural gas increases with industrial development, the supply of natural gas is expected to become unstable with a shortage of imported natural gas. It is hence necessary to meet this demand by introducing and developing various types of natural gas, such as pipeline natural gas (PNG) and substituted natural gas (SNG), in addition to liquefied natural gas (LNG). The components included in PNG as well as their concentrations must be measured accurately, and a standard gas should be developed to accurately measure hydrocarbons ($C_6-C_{10}$), which are trace components included in natural gas. The components in the primary standard gas mixtures (PSMs) developed in the present study were hexane, heptane, octane, nonane, and decane with concentrations of $10-30{\mu}mol/mol$ with methane as the balance gas. Standard hydrocarbon ($C_6-C_{10}$) gas mixtures were prepared in aluminum cylinders by a gravimetric method with traceability following ISO 6142 with raw material gases, for which the purity of each component was analyzed completely. The prepared standard gas mixtures were analyzed by to evaluate the preparation consistency between the standard gas mixtures, the adsorbability of the cylinders, the variation of the stability, and the uncertainty. The results showed that aluminum cylinders have little adsorptive loss on their internal surfaces with excellent long-term stability. The developed standard gas mixture, containing hexane, heptane, octane, nonane, and decane with concentrations of $10-30{\mu}mol/mol$, showed an uncertainty in a range of 0.79 % - 1.63 %.

Recent Developments in Metal Oxide Gas Sensors for Breath Analysis (산화물 반도체를 이용한 최신 호기센서 기술 동향)

  • Yoon, Ji-Wook;Lee, Jong-Heun
    • Ceramist
    • /
    • v.22 no.1
    • /
    • pp.70-81
    • /
    • 2019
  • Breath analysis is rapidly evolving as a non-invasive disease recognition and diagnosis method. Metal oxide gas sensors are one of the most ideal platforms for realizing portable, hand-held breath analysis devices in the near future. This paper reviewed the recent developments in metal oxide gas sensors detecting exhaled biomarker gases such as nitric oxides, acetone, ammonia, hydrogen sulfide, and hydrocarbons. Emphasis was placed on strategies to tailor sensing materials/films capable of highly selective and sensitive detection of biomarker gases with negligible cross-response to ethanol, the major interfering breath gas. Specific examples were given to highlight the validity of the strategies, which include optimization of sensing temperature, doping additives, utilizing acid-base interaction, loading catalysts, and controlling gas reforming reaction. In addition, we briefly discussed the design and optimization method of gas sensor arrays for implementing the simultaneous assessment of multiple diseases. Breath analysis using high-performance metal oxide gas sensors/arrays will open new roads for point-of-care diagnosis of diseases such as asthma, diabetes, kidney dysfunction, halitosis, and lung cancer.

Analysis of Gas Flow Behavior with Experiments for LPG releasing and 3D Mapping of Gas Sensor (LPG 누출 및 가스센서 3D Mapping을 통한 가스유동현상 분석)

  • Kim, Jeong Hwan;Lee, Min-Kyung;Kil, Seong-Hee;Lee, Jin-han;Jo, Young-do;Moon, Jong-Sam
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.45-55
    • /
    • 2017
  • Release and fire/explosion tests of flammable gas are extremely dangerous. Furthermore, it is difficult to select the site where the experiment can be performed. In these reasons, gas flow analysis(CFD) has been used as much as possible. However, with the opening of the Energy Safety Empirical Research Center in Yeongwol-gun, Gangwon-do in October 2016, it was possible to conduct releases and detection tests of small scale combustible gas as well as large scale / high pressure / ultra low temperature experiments. In this study, LPG leaked after the calibration and placement of the sensor, the sensor detected LPG and the data were visualized as a contour map. And the differences between the actual release(28s, max 3.7[m]) and the analysis were analyzed compared to the FLACS analyzed under the same conditions.