DOI QR코드

DOI QR Code

Recent Developments in Metal Oxide Gas Sensors for Breath Analysis

산화물 반도체를 이용한 최신 호기센서 기술 동향

  • Received : 2019.02.22
  • Accepted : 2019.03.05
  • Published : 2019.03.30

Abstract

Breath analysis is rapidly evolving as a non-invasive disease recognition and diagnosis method. Metal oxide gas sensors are one of the most ideal platforms for realizing portable, hand-held breath analysis devices in the near future. This paper reviewed the recent developments in metal oxide gas sensors detecting exhaled biomarker gases such as nitric oxides, acetone, ammonia, hydrogen sulfide, and hydrocarbons. Emphasis was placed on strategies to tailor sensing materials/films capable of highly selective and sensitive detection of biomarker gases with negligible cross-response to ethanol, the major interfering breath gas. Specific examples were given to highlight the validity of the strategies, which include optimization of sensing temperature, doping additives, utilizing acid-base interaction, loading catalysts, and controlling gas reforming reaction. In addition, we briefly discussed the design and optimization method of gas sensor arrays for implementing the simultaneous assessment of multiple diseases. Breath analysis using high-performance metal oxide gas sensors/arrays will open new roads for point-of-care diagnosis of diseases such as asthma, diabetes, kidney dysfunction, halitosis, and lung cancer.

Keywords

References

  1. L. Pauling, A. B. Robinson, R. Teranish, P. Cary, "Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography" Proc. Nat. Acad. Sci. USA 68 [10] 2374-2376 (1971) https://doi.org/10.1073/pnas.68.10.2374
  2. M. Righettoni, A. Amann, S. E. Pratsinis, "Breath analysis by nanostructured metal oxides as chemoresistive gas sensors" Mater. Today 18 [3] 163-171 (2015) https://doi.org/10.1016/j.mattod.2014.08.017
  3. J.-W. Yoon, J.-H. Lee, "Toward breath analysis on a chip for disease diagnosis using semiconductorbased chemiresistors: recent progress and future perspectives" Lab Chip 17 [21] 3537-3557 (2017) https://doi.org/10.1039/C7LC00810D
  4. C. Turner, P. Spanel, D. Smith, "A longitudinal study of ethanol and acetaldehyde in the exhaled breath of healthy volunteers using selected-ion flow-tube mass spectrometry" Rapid Commun. Mass Spectrom. 20 [1] 61-68 (2006) https://doi.org/10.1002/rcm.2275
  5. J.-S. Kim, J.-W. Yoon, Y. J. Hong, Y. C. Kang, F. Abdel-Hady, A. A. Wazzan, J.-H. Lee, "Highly sensitive and selective detection of ppb-level $NO_2$ using multi-shelled $WO_3$ yolk-shell spheres" Sens. Actuators B 229 561-569 (2016) https://doi.org/10.1016/j.snb.2016.02.003
  6. L. Wang, A. Teleki, S. E. Pratsinis, P. I. Gouma, "Ferroelectric $WO_3$ nanoparticles for acetone selective detection" Chem. Mater. 20 [15] 4794-4796 (2008) https://doi.org/10.1021/cm800761e
  7. M. Righettoni, A. Tricoli, S. E. Pratsinis, "Si:$WO_3$ sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis" Anal. Chem. 82 [9] 3581-3587 (2010) https://doi.org/10.1021/ac902695n
  8. Y. H. Cho, Y. C. Kang, J.-H. Lee, "Highly selective and sensitive detection of trimethylamine using $WO_3$ hollow spheres prepared by ultrasonic spray pyrolysis" Sens. Actuators B 176 971-977 (2013) https://doi.org/10.1016/j.snb.2012.10.044
  9. H.-Y. Li, L. Huang, X.-X. Wang, C.-S. Lee, J.-W. Yoon, J. Zhou, X. Guo, J.-H. Lee, "Molybdenum trioxide nanopaper as a dual gas sensor for detecting trimethylamine and hydrogen sulfide" RSC Adv. 7 [7] 3680-3685 (2017). https://doi.org/10.1039/C6RA26280E
  10. A. T. Guntner, M. Righettoni, S. E. Pratsinis, "Selective sensing of $NH_3$ by Si-doped ${\alpha}$-$MoO_3$ for breath analysis" Sens. Actuators B 223 266-273 (2016) https://doi.org/10.1016/j.snb.2015.09.094
  11. J.-W. Yoon, Y. J. Hong, Y. C. Kang, J.-H. Lee, "High performance chemiresistive $H_2S$ sensors using Ag-loaded $SnO_2$ yolk-shell nanostructures" RSC Adv. 4 [31] 16067-16074 (2014) https://doi.org/10.1039/C4RA01364F
  12. X. Liang, T.-H. Kim, J.-W. Yoon, C.-H. Kwak, J.-H. Lee, "Ultrasensitive and ultraselective detection of $H_2S$ using electrospun CuO-loaded $In_2O_3$ nanofiber sensors assisted by pulse heating" Sens. Actuators B 209 934-943 (2015) https://doi.org/10.1016/j.snb.2014.11.130
  13. K.-I. Choi, H.-J. Kim, Y. C. Kang, J.-H. Lee, "Ultraselective and ultrasensitive detection of $H_2S$ in highly humid atmosphere using CuO-loaded $SnO_2$ hollow spheres for real-time diagnosis of halitosis" Sens. Actuators B 194 371-376 (2014) https://doi.org/10.1016/j.snb.2013.12.111
  14. K. H. Lee, B.-Y. Kim, J.-W. Yoon, J.-H. Lee, "Extremely selective detection of ppb levels of indoor xylene using $CoCr_2O_4$ hollow spheres activated by Pt doping" Chem. Commun. 55 [6] 751-754 (2019) https://doi.org/10.1039/C8CC08186G
  15. S.-Y. Jeong, J.-W. Yoon, T.-H. Kim, H.-M. Jeong, C.-S. Lee, Y. C. Kang, J.-H. Lee, "Ultra-selective detection of sub-ppm-level benzene using Pd-$SnO_2$ yolk-shell micro-reactors with a catalytic $Co_3O_4$ overlayer for monitoring air quality" J. Mater. Chem. A 5 [4] 1446-1454 (2017) https://doi.org/10.1039/C6TA09397C
  16. S.-H. Kim, H.-J. Yoon, "Use of the exhaled nitric oxide for management of asthma and respiratory disease" Korean J. Med. 74 [6] 579-586 (2008)
  17. S. A. Kharitonov, F. Gonio, C. Kelly, S. Meah, P. J. Barnes, "Reproducibility of exhaled nitric oxide measurements in healthy and asthmatic adults and children" Eur. Respir. J. 21 [3] 433-438 (2003) https://doi.org/10.1183/09031936.03.00066903a
  18. M. Machida, M. Uto, D. Kurogi, T. Kijima, "$MnO_x$-$CeO_2$ binary oxides for catalytic $NO_x$ sorption at low temperatures. Sorptive removal of $NO_x$" Chem. Mater. 12 [10] 3158-3164 (2000) https://doi.org/10.1021/cm000207r
  19. H. G. Moon, Y. R. Choi, Y.-S. Shim, K.-I. Choi, J.-H. Lee, J.-S. Kim, S.-J. Yoon, H.-H. Park, C.-Y. Kang, H. W. Jang, "Extremely sensitive and selective NO probe based on villi-like $WO_3$ nanostructures for application to exhaled breath analyzers" ACS Appl. Mater. Interface 5 [21] 10591-10596 (2013) https://doi.org/10.1021/am402456s
  20. W.-T. Koo, S.-J. Choi, N.-H. Kim, J.-S. Jang, I.-D. Kim, "Catalyst-decorated hollow $WO_3$ nanotubes using layer-by-layer self-assembly on polymeric nanofiber templates and their application in exhaled breath sensor" Sens. Actuators B 223 301-310 (2016) https://doi.org/10.1016/j.snb.2015.09.095
  21. C.-Y. Lee, S.-J. Kim, I.-S. Hwang, J.-H. Lee, "Glucose-mediated hydrothermal synthesis and gas sensing characteristics of $WO_3$ hollow microspheres" Sens. Actuators B 142 [1] 236-242 (2009) https://doi.org/10.1016/j.snb.2009.08.031
  22. M. Penza, C. Martucci, G. Cassano, "$NO_x$ gas sensing characteristics of $WO_3$ thin films activated by noble metals (Pd, Pt, Au) layers" Sens. Actuators B 50 [1] 52-59 (1998) https://doi.org/10.1016/S0925-4005(98)00156-7
  23. O. E. Owen, V. E. Trapp, C. L. Skutches, M. A. Mozzoli, R. D. Hoeldtke, G. Boden, G. A. Reichard, "Acetone metabolism during diabetic ketoacidosis" Diabetes 31 [3] 242-248 (1982) https://doi.org/10.2337/diabetes.31.3.242
  24. C. Deng, J. Zhang, X. Yu, W. Zhang, X. Zhang, "Determination of acetone in human breath by gas chromatography-mass spectrometry and solidphase microextraction with on-fiber derivatization" J. Chromatogr. B 810 [2] 269-275 (2004) https://doi.org/10.1016/S1570-0232(04)00657-9
  25. A. T. Guntner, N. A. Sievi, S. J. Theodore, T. Gulich, M. Kohler, S. E. Pratsinis, "Noninvasive body fat burn monitoring from exhaled acetone with Si-doped $WO_3$-sensing nanoparticles" Anal. Chem. 89 [19] 10578-10584 (2017) https://doi.org/10.1021/acs.analchem.7b02843
  26. J.-Y. Shen, M.-D. Wang, Y.-F. Wang, J.-Y. Hu, Y. Zhu, Y. X. Zhang, Z.-J. Li, H.-C. Yao, "Iron and carbon codoped $WO_3$ with hierarchical walnut-like microstructure for highly sensitive and selective acetone sensor" Sens. Actuators B 256 27-37 (2018) https://doi.org/10.1016/j.snb.2017.10.073
  27. S.-J. Choi, I. Lee, B.-H. Jang, D.-Y. Youn, W.-H. Ryu, C. O. Park, I.-D. Kim, "Selective diagnosis of diabetes using Pt-functionalized $WO_3$ hemitube networks as a sensing layer of acetone in exhaled breath" Anal. Chem. 85 [3] 1792-1796 (2013) https://doi.org/10.1021/ac303148a
  28. N.-H. Kim, S.-J. Choi, S.-J. Kim, H.-J. Cho, J.-S. Jang, W.-T. Koo, M. Kim, I.-D. Kim, "Highly sensitive and selective acetone sensing performance of $WO_3$ nanofibers functionalized by $Rh_2O_3$ nanoparticles" Sens. Actuators B 224 185-192 (2016) https://doi.org/10.1016/j.snb.2015.10.021
  29. S. T. Krishnan, J. P. Devadhasan, S. Kim, "Recent analytical approaches to detect exhaled breath ammonia with special reference to renal patients" Anal. Bioanal. Chem. 409 [1] 21-31 (2017) https://doi.org/10.1007/s00216-016-9903-3
  30. S. Davies, P. Spanel, D. Smith, "Quantitative analysis of ammonia on the breath of patients in end-stage renal failure" Kidney Int. 52 [1] 223-228 (1997) https://doi.org/10.1038/ki.1997.324
  31. J. Obermeier, P. Trefz, J. Happ, J. K. Schubert, H. Staude, D.-C. Fischer, W. Miekisch, "Exhaled volatile substances mirror clinical conditions in pediatric chronic kidney disease" PLoS ONE 12 [6] e0178745 (2017) https://doi.org/10.1371/journal.pone.0178745
  32. Grabowska-Polanowska, J. Faber, M. Skowron, P. Miarka, A. Pietrzycka, I. Sliwka, A. Amann, "Detection of potential chronic kidney disease markers in breath using gas chromatography with massspectral detection coupled with thermal desorption method" J. Chromatogr. A 1301 [2] 179-189 (2013) https://doi.org/10.1016/j.chroma.2013.05.012
  33. H.-S. Woo, C. W. Na, I.-D. Kim, J.-H. Lee, "Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO-$Cr_2O_3$ hetero-nanostructures" Nanotechnology 23 [24] 245501 (2012) https://doi.org/10.1088/0957-4484/23/24/245501
  34. C.-H. Kwak, H.-S. Woo, J.-H. Lee, "Selective trimethylamine sensors using $Cr_2O_3$-decorated $SnO_2$ nanowires" Sens. Actuators B 204 231-238 (2014) https://doi.org/10.1016/j.snb.2014.07.084
  35. T.-H. Kim, J.-W. Yoon, Y. C. Kang, F. Abdel-Hady, A. A. Wazzan, J.-H. Lee, "A strategy for ultrasensitive and selective detection of methylamine using p-type $Cr_2O_3$: Morphological design of sensing materials, control of charge carrier concentrations, and configurational tuning of Au catalysts" Sens. Actuators B 240 1049-1057 (2017) https://doi.org/10.1016/j.snb.2016.09.098
  36. S.-J. Lee, S.-T. Kim, H.-S. Kim, "A study on the measurement of halitosis of human mouth with chemical gas sensor arrays" J. Sens. Sci. Technol. 20 [4] 279-285 (2011) https://doi.org/10.5369/JSST.2011.20.4.279
  37. J. Chen, K. Wang, L. Hartmann, W. Zhou, "$H_2S$ detection by vertically aligned CuO nanowire array sensors" J. Phys. Chem. C 112 [41] 16017-16021 (2008) https://doi.org/10.1021/jp805919t
  38. H.-S. Woo, C.-H. Kwak, I.-D. Kim, J.-H. Lee, "Selective, sensitive, and reversible detection of $H_2S$ using Mo-doped ZnO nanowire network sensors" J. Mater. Chem. A 2 [18] 6412-6418 (2014) https://doi.org/10.1039/c4ta00387j
  39. Y. Wang, Y. Wang, J. Cao, F. Kong, H. Xia, J. Zhang, B. Zhu, S. Wang, S. Wu, "Low-temperature $H_2S$ sensors based on Ag-doped ${\alpha}$-$Fe_2O_3$ nanoparticles" Sens. Actuators B 131 [1] 183-189 (2008) https://doi.org/10.1016/j.snb.2007.11.002
  40. X. Chen, M. Cao, Y. Li, W. Hu, P. Wang, K. Ying, H. Pan, "A study of an electronic nose for detection of lung cancer based on a virtual SAW gas sensors array and imaging recognition method" Meas. Sci. Technol. 16 [8] 1535-1546. https://doi.org/10.1088/0957-0233/16/8/001
  41. M. Iwamoto, Y. Yoda, N. Yamazoe, T. Seiyama, "Study of metal oxide catalysts by temperature programmed desorption. 4. Oxygen adsoption on various metal oxides" J. Phys. Chem. 82 [24] 2564-2570 (1978) https://doi.org/10.1021/j100513a006
  42. H.-J. Kim, J.-H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview" Sens. Actuators B 192 607-627 (2014) https://doi.org/10.1016/j.snb.2013.11.005
  43. J.-W. Yoon, Y. J. Hong, G. D. Park, S.-J. Hwang, F. Abdel-Hady, A. A. Wazzan, Y. C. Kang, J.-H. Lee, "Kilogram-scale synthesis of Pd-loaded quintuple-shelled $Co_3O_4$ microreactors and their application to ultrasensitive and ultraselective detection of methylbenzenes" ACS Appl. Mater. Interfaces 7 [14] 7717-7723 (2015) https://doi.org/10.1021/acsami.5b00706
  44. S.-J. Hwang, K.-I. Choi, J.-W. Yoon, Y. C. Kang, J.-H. Lee, "Pure and palladium-loaded $Co_3O_4$ hollow hierarchical nanostructures with giant and ultraselective chemiresistivity to xylene and toluene" Chem. Eur. -J. 21 [15] 5872-5878 (2015) https://doi.org/10.1002/chem.201405076
  45. N. J. Pineau, J. F. Kompalla, A. T. Guntner, S. E. Pratsinis, "Orthogonal gas sensor arrays by chemoresistive material design" Microchim. Acta 185 563 (2018) https://doi.org/10.1007/s00604-018-3104-z

Cited by

  1. Recent Research Trend in WO3-based Gas Sensors for Enhancing Sensing Properties vol.24, pp.2, 2019, https://doi.org/10.31613/ceramist.2021.24.2.05