• Title/Summary/Keyword: G protein-coupled receptor (GPCR)

Search Result 60, Processing Time 0.032 seconds

Structural Aspects of GPCR-G Protein Coupling

  • Chung, Ka Young
    • Toxicological Research
    • /
    • 제29권3호
    • /
    • pp.149-155
    • /
    • 2013
  • G protein-coupled receptors (GPCRs) are membrane receptors; approximately 40% of drugs on the market target GPCRs. A precise understanding of the activation mechanism of GPCRs would facilitate the development of more effective and less toxic drugs. Heterotrimeric G proteins are important molecular switches in GPCR-mediated signal transduction. An agonist-activated receptor interacts with specific sites on G proteins and promotes the release of GDP from the $G{\alpha}$ subunit. Because of the important biological role of the GPCR-G protein coupling, conformational changes in the G protein upon receptor coupling have been of great interest. One of the most important questions was the interface between the GPCR and G proteins and the structural mechanism of GPCR-induced G protein activation. A number of biochemical and biophysical studies have been performed since the late 80s to address these questions; there was a significant breakthrough in 2011 when the crystal structure of a GPCR-G protein complex was solved. This review discusses the structural aspects of GPCR-G protein coupling by comparing the results of previous biochemical and biophysical studies to the GPCR-G protein crystal structure.

Biased G Protein-Coupled Receptor Signaling: New Player in Modulating Physiology and Pathology

  • Bologna, Zuzana;Teoh, Jian-peng;Bayoumi, Ahmed S.;Tang, Yaoliang;Kim, Il-man
    • Biomolecules & Therapeutics
    • /
    • 제25권1호
    • /
    • pp.12-25
    • /
    • 2017
  • G protein-coupled receptors (GPCRs) are a family of cell-surface proteins that play critical roles in regulating a variety of pathophysiological processes and thus are targeted by almost a third of currently available therapeutics. It was originally thought that GPCRs convert extracellular stimuli into intracellular signals through activating G proteins, whereas ${\beta}$-arrestins have important roles in internalization and desensitization of the receptor. Over the past decade, several novel functional aspects of ${\beta}$-arrestins in regulating GPCR signaling have been discovered. These previously unanticipated roles of ${\beta}$-arrestins to act as signal transducers and mediators of G protein-independent signaling have led to the concept of biased agonism. Biased GPCR ligands are able to engage with their target receptors in a manner that preferentially activates only G protein- or ${\beta}$-arrestin-mediated downstream signaling. This offers the potential for next generation drugs with high selectivity to therapeutically relevant GPCR signaling pathways. In this review, we provide a summary of the recent studies highlighting G protein- or ${\beta}$-arrestin-biased GPCR signaling and the effects of biased ligands on disease pathogenesis and regulation.

Platform Technologies for Research on the G Protein Coupled Receptor: Applications to Drug Discovery Research

  • Lee, Sung-Hou
    • Biomolecules & Therapeutics
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2011
  • G-protein coupled receptors (GPCRs) constitute an important class of drug targets and are involved in every aspect of human physiology including sleep regulation, blood pressure, mood, food intake, perception of pain, control of cancer growth, and immune response. Radiometric assays have been the classic method used during the search for potential therapeutics acting at various GPCRs for most GPCR-based drug discovery research programs. An increasing number of diverse small molecules, together with novel GPCR targets identified from genomics efforts, necessitates the use of high-throughput assays with a good sensitivity and specificity. Currently, a wide array of high-throughput tools for research on GPCRs is available and can be used to study receptor-ligand interaction, receptor driven functional response, receptor-receptor interaction,and receptor internalization. Many of the assay technologies are based on luminescence or fluorescence and can be easily applied in cell based models to reduce gaps between in vitro and in vivo studies for drug discovery processes. Especially, cell based models for GPCR can be efficiently employed to deconvolute the integrated information concerning the ligand-receptor-function axis obtained from label-free detection technology. This review covers various platform technologies used for the research of GPCRs, concentrating on the principal, non-radiometric homogeneous assay technologies. As current technology is rapidly advancing, the combination of probe chemistry, optical instruments, and GPCR biology will provide us with many new technologies to apply in the future.

Structural Studies of G Protein-Coupled Receptors

  • Zhang, Dandan;Zhao, Qiang;Wu, Beili
    • Molecules and Cells
    • /
    • 제38권10호
    • /
    • pp.836-842
    • /
    • 2015
  • G protein-coupled receptors (GPCRs) constitute the largest and the most physiologically important membrane protein family that recognizes a variety of environmental stimuli, and are drug targets in the treatment of numerous diseases. Recent progress on GPCR structural studies shed light on molecular mechanisms of GPCR ligand recognition, activation and allosteric modulation, as well as structural basis of GPCR dimerization. In this review, we will discuss the structural features of GPCRs and structural insights of different aspects of GPCR biological functions.

Structural Features of β2 Adrenergic Receptor: Crystal Structures and Beyond

  • Bang, Injin;Choi, Hee-Jung
    • Molecules and Cells
    • /
    • 제38권2호
    • /
    • pp.105-111
    • /
    • 2015
  • The beta2-adrenergic receptor (${\beta}2AR$) belongs to the G protein coupled receptor (GPCR) family, which is the largest family of cell surface receptors in humans. Extra attention has been focused on the human GPCRs because they have been studied as important protein targets for pharmaceutical drug development. In fact, approximately 40% of marketed drugs directly work on GPCRs. GPCRs respond to various extracellular stimuli, such as sensory signals, neurotransmitters, chemokines, and hormones, to induce structural changes at the cytoplasmic surface, activating downstream signaling pathways, primarily through interactions with heterotrimeric G proteins or through G-protein independent pathways, such as arrestin. Most GPCRs, except for rhodhopsin, which contains covalently linked 11 cis-retinal, bind to diffusible ligands, having various conformational states between inactive and active structures. The first human GPCR structure was determined using an inverse agonist bound ${\beta}2AR$ in 2007 and since then, more than 20 distinct GPCR structures have been solved. However, most GPCR structures were solved as inactive forms, and an agonist bound fully active structure is still hard to obtain. In a structural point of view, ${\beta}2AR$ is relatively well studied since its fully active structure as a complex with G protein as well as several inactive structures are available. The structural comparison of inactive and active states gives an important clue in understanding the activation mechanism of ${\beta}2AR$. In this review, structural features of inactive and active states of ${\beta}2AR$, the interaction of ${\beta}2AR$ with heterotrimeric G protein, and the comparison with ${\beta}1AR$ will be discussed.

Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis

  • Zhang, Xiaohan;Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • 제25권1호
    • /
    • pp.26-43
    • /
    • 2017
  • Endocytosis is a process by which cells absorb extracellular materials via the inward budding of vesicles formed from the plasma membrane. Receptor-mediated endocytosis is a highly selective process where receptors with specific binding sites for extracellular molecules internalize via vesicles. G protein-coupled receptors (GPCRs) are the largest single family of plasma-membrane receptors with more than 1000 family members. But the molecular mechanisms involved in the regulation of GPCRs are believed to be highly conserved. For example, receptor phosphorylation in collaboration with ${\beta}$-arrestins plays major roles in desensitization and endocytosis of most GPCRs. Nevertheless, a number of subsequent studies showed that GPCR regulation, such as that by endocytosis, occurs through various pathways with a multitude of cellular components and processes. This review focused on i) functional interactions between homologous and heterologous pathways, ii) methodologies applied for determining receptor endocytosis, iii) experimental tools to determine specific endocytic routes, iv) roles of small guanosine triphosphate-binding proteins in GPCR endocytosis, and v) role of post-translational modification of the receptors in endocytosis.

A Machine Learning Based Method for the Prediction of G Protein-Coupled Receptor-Binding PDZ Domain Proteins

  • Eo, Hae-Seok;Kim, Sungmin;Koo, Hyeyoung;Kim, Won
    • Molecules and Cells
    • /
    • 제27권6호
    • /
    • pp.629-634
    • /
    • 2009
  • G protein-coupled receptors (GPCRs) are part of multi-protein networks called 'receptosomes'. These GPCR interacting proteins (GIPs) in the receptosomes control the targeting, trafficking and signaling of GPCRs. PDZ domain proteins constitute the largest protein family among the GIPs, and the predominant function of the PDZ domain proteins is to assemble signaling pathway components into close proximity by recognition of the last four C-terminal amino acids of GPCRs. We present here a machine learning based approach for the identification of GPCR-binding PDZ domain proteins. In order to characterize the network of interactions between amino acid residues that contribute to the stability of the PDZ domain-ligand complex and to encode the complex into a feature vector, amino acid contact matrices and physicochemical distance matrix were constructed and adopted. This novel machine learning based method displayed high performance for the identification of PDZ domain-ligand interactions and allowed the identification of novel GPCR-PDZ domain protein interactions.

Homology Modeling of GPR18 Receptor, an Orphan G-protein-coupled Receptor

  • Kothandan, Gugan;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제6권1호
    • /
    • pp.16-20
    • /
    • 2013
  • G-protein-coupled receptor (GPCR) superfamily is the largest known receptor family, characterized by seven transmembrane domains and considered to be an important drug target. In this study we focused on an orphan GPCR termed as GPR18. As there is no X-ray crystal structure has been reported for this receptor, we report on a homology model of GPR18. Template structure with high homology was used for modeling and ten models were developed. A model was selected and refined by energy minimization. The selected model was further validated using various parameters. Our results could be a starting point for further structure based drug design.

Comprehensive Analysis of Non-Synonymous Natural Variants of G Protein-Coupled Receptors

  • Kim, Hee Ryung;Duc, Nguyen Minh;Chung, Ka Young
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.101-108
    • /
    • 2018
  • G protein-coupled receptors (GPCRs) are the largest superfamily of transmembrane receptors and have vital signaling functions in various organs. Because of their critical roles in physiology and pathology, GPCRs are the most commonly used therapeutic target. It has been suggested that GPCRs undergo massive genetic variations such as genetic polymorphisms and DNA insertions or deletions. Among these genetic variations, non-synonymous natural variations change the amino acid sequence and could thus alter GPCR functions such as expression, localization, signaling, and ligand binding, which may be involved in disease development and altered responses to GPCR-targeting drugs. Despite the clinical importance of GPCRs, studies on the genotype-phenotype relationship of GPCR natural variants have been limited to a few GPCRs such as b-adrenergic receptors and opioid receptors. Comprehensive understanding of non-synonymous natural variations within GPCRs would help to predict the unknown genotype-phenotype relationship and yet-to-be-discovered natural variants. Here, we analyzed the non-synonymous natural variants of all non-olfactory GPCRs available from a public database, UniProt. The results suggest that non-synonymous natural variations occur extensively within the GPCR superfamily especially in the N-terminus and transmembrane domains. Within the transmembrane domains, natural variations observed more frequently in the conserved residues, which leads to disruption of the receptor function. Our analysis also suggests that only few non-synonymous natural variations have been studied in efforts to link the variations with functional consequences.

US28, a Virally-Encoded GPCR as an Antiviral Target for Human Cytomegalovirus Infection

  • Lee, Sungjin;Chung, Yoon Hee;Lee, Choongho
    • Biomolecules & Therapeutics
    • /
    • 제25권1호
    • /
    • pp.69-79
    • /
    • 2017
  • Viruses continue to evolve a new strategy to take advantage of every aspect of host cells in order to maximize their survival. Due to their central roles in transducing a variety of transmembrane signals, GPCRs seem to be a prime target for viruses to pirate for their own use. Incorporation of GPCR functionality into the genome of herpesviruses has been demonstrated to be essential for pathogenesis of many herpesviruses-induced diseases. Here, we introduce US28 of human cytomegalovirus (HCMV) as the best-studied example of virally-encoded GPCRs to manipulate host GPCR signaling. In this review, we wish to summarize a number of US28-related topics including its regulation of host signaling pathways, its constitutive internalization, its structural and functional analysis, its roles in HCMV biology and pathogenesis, its proliferative activities and role in oncogenesis, and pharmacological modulation of its biological activities. This review will aid in our understanding of how pathogenic viruses usurp the host GPCR signaling for successful viral infection. This kind of knowledge will enable us to build a better strategy to control viral infection by normalizing the virally-dysregulated host GPCR signaling.