DOI QR코드

DOI QR Code

Platform Technologies for Research on the G Protein Coupled Receptor: Applications to Drug Discovery Research

  • Lee, Sung-Hou (Department of Biomedical Technology, College of Engineering, Sangmyung University)
  • Received : 2010.12.15
  • Accepted : 2011.01.21
  • Published : 2011.01.31

Abstract

G-protein coupled receptors (GPCRs) constitute an important class of drug targets and are involved in every aspect of human physiology including sleep regulation, blood pressure, mood, food intake, perception of pain, control of cancer growth, and immune response. Radiometric assays have been the classic method used during the search for potential therapeutics acting at various GPCRs for most GPCR-based drug discovery research programs. An increasing number of diverse small molecules, together with novel GPCR targets identified from genomics efforts, necessitates the use of high-throughput assays with a good sensitivity and specificity. Currently, a wide array of high-throughput tools for research on GPCRs is available and can be used to study receptor-ligand interaction, receptor driven functional response, receptor-receptor interaction,and receptor internalization. Many of the assay technologies are based on luminescence or fluorescence and can be easily applied in cell based models to reduce gaps between in vitro and in vivo studies for drug discovery processes. Especially, cell based models for GPCR can be efficiently employed to deconvolute the integrated information concerning the ligand-receptor-function axis obtained from label-free detection technology. This review covers various platform technologies used for the research of GPCRs, concentrating on the principal, non-radiometric homogeneous assay technologies. As current technology is rapidly advancing, the combination of probe chemistry, optical instruments, and GPCR biology will provide us with many new technologies to apply in the future.

Keywords

References

  1. AbdAlla, S., Lother, H., el Massiery, A. and Quitterer, U. (2001) Increased AT (1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat. Med. 7, 1003-1009. https://doi.org/10.1038/nm0901-1003
  2. Albizu, L., Cottet, M., Kralikova, M., Stoev, S., Seyer, R., Brabet, I., Roux, T., Bazin, H., Bourrier, E., Lamarque, L., Breton, C., Rives, M. L., Newman, A., Javitch, J., Trinquet, E., Manning, M., Pin, J. P., Mouillac, B. and Durroux, T. (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat. Chem. Biol. 6, 587-594. https://doi.org/10.1038/nchembio.396
  3. Alfaras-Melainis, K., Gomes, I., Rozenfeld, R., Zachariou, V. and Devi, L. (2009) Modulation of opioid receptor function by protein-protein interactions. Front Biosci. 14, 3594-3607.
  4. Auld, D. S., Thorne, N., Maguire, W. F. and Inglese, J. (2009) Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression. Proc. Natl. Acad. Sci. USA. 106, 3585-3590. https://doi.org/10.1073/pnas.0813345106
  5. Berridge, M. J. (1993) Inositol trisphosphate and calcium signalling. Nature 361, 315-325. https://doi.org/10.1038/361315a0
  6. Bhushan, R. G., Sharma, S. K., Xie, Z., Daniels, D. J. and Portoghese, P. S. (2004) A bivalent ligand (KDN-21) reveals spinal delta and kappa opioid receptors are organized as heterodimers that give rise to delta(1) and kappa(2) phenotypes. Selective targeting of delta-kappa heterodimers. J. Med. Chem. 47, 2969-2972. https://doi.org/10.1021/jm0342358
  7. Bovolenta, S., Foti, M., Lohmer, S. and Corazza, S. (2007) Development of a Ca(2+)-activated photoprotein, Photina, and its application to high-throughput screening. J. Biomol. Screen 12, 694-704. https://doi.org/10.1177/1087057107301497
  8. Branchek, T. A., Smith, K. E., Gerald, C. and Walker, M. W. (2000) Galanin receptor subtypes. Trends Pharmacol. Sci. 21, 109-117. https://doi.org/10.1016/S0165-6147(00)01446-2
  9. Burbaum, J. J. and Sigal, N. H. (1997) New technologies for high-throughput screening. Curr. Opin. Chem. Biol. 1, 72-78. https://doi.org/10.1016/S1367-5931(97)80111-1
  10. Cabello, N., Gandia, J., Bertarelli, D. C., Watanabe, M., Lluis, C., Franco, R., Ferre, S., Lujan, R. and Ciruela, F. (2009) Metabotropic glutamate type 5, dopamine D2 and adenosine A2a receptors form higher-order oligomers in living cells. J. Neurochem. 109, 1497-1507. https://doi.org/10.1111/j.1471-4159.2009.06078.x
  11. Calebiro, D., Nikolaev, V. O., Persani, L. and Lohse, M. J. (2010) Signaling by internalized G-protein-coupled receptors. Trends. Pharmacol. Sci. 31, 221-228. https://doi.org/10.1016/j.tips.2010.02.002
  12. Chen, X. P., Yang, W., Fan, Y., Luo, J. S., Hong, K., Wang, Z., Yan, J. F., Chen, X., Lu, J. X., Benovic, J. L. and Zhou, N. M. (2010) Structural determinants in the second intracellular loop of the human cannabinoid CB1 receptor mediate selective coupling to G(s) and G(i). Br. J. Pharmacol. 161, 1817-1834. https://doi.org/10.1111/j.1476-5381.2010.01006.x
  13. Cheng, Z., Tu, C., Rodriguez, L., Chen, T. H., Dvorak, M. M., Margeta, M., Gassmann, M., Bettler, B., Shoback, D. and Chang, W. (2007) Type B gamma-aminobutyric acid receptors modulate the function of the extracellular Ca2+-sensing receptor and cell differentiation in murine growth plate chondrocytes. Endocrinology 148, 4984-4992. https://doi.org/10.1210/en.2007-0653
  14. Ciruela, F., Escriche, M., Burgueno, J., Angulo, E., Casado, V., Soloviev, M. M., Canela, E. I., Mallol, J., Chan, W. Y., Lluis, C., McIlhinney, R. A. and Franco, R. (2001) Metabotropic glutamate 1alpha and adenosine A1 receptors assemble into functionally interacting complexes. J. Biol. Chem. 276, 18345-18351. https://doi.org/10.1074/jbc.M006960200
  15. Daly, C. J. and McGrath, J. C. (2003) Fluorescent ligands, antibodies, and proteins for the study of receptors. Pharmacol. Ther. 100, 101-118. https://doi.org/10.1016/j.pharmthera.2003.08.001
  16. Daniels, D. J., Lenard, N. R., Etienne, C. L., Law, P. Y., Roerig, S. C. and Portoghese, P. S. (2005) Opioid-induced tolerance and dependence in mice is modulated by the distance between pharmacophores in a bivalent ligand series. Proc. Natl. Acad. Sci. USA 102, 19208-19213. https://doi.org/10.1073/pnas.0506627102
  17. Decaillot, F. M., Rozenfeld, R., Gupta, A. and Devi, L. A. (2008) Cell surface targeting of mu-delta opioid receptor heterodimers by RTP4. Proc. Natl. Acad. Sci. USA 105, 16045-16050. https://doi.org/10.1073/pnas.0804106105
  18. Dodgson, K., Gedge, L., Murray, D. C. and Coldwell, M. (2009) A 100K well screen for a muscarinic receptor using the Epic labelfree system--a refl ection on the benefi ts of the label-free approach to screening seven-transmembrane receptors. J. Recept. Signal. Transduct. Res. 29, 163-172. https://doi.org/10.1080/10799890903079844
  19. Dupriez, V. J., Maes, K., Le Poul, E., Burgeon, E. and Detheux, M. (2002) Aequorin-based functional assays for G-protein-coupled receptors, ion channels, and tyrosine kinase receptors. Receptors Channels 8, 319-330. https://doi.org/10.1080/10606820214646
  20. Eapen, M. S., Sodhi, R., Balakrishnan, G., Dastidar, S., Ray, A. and Vijayakrishnan, L. (2010) Evaluation of nonradioactive cell-free cAMP assays for measuring in vitro phosphodiesterase activity. Pharmacology 85, 280-285. https://doi.org/10.1159/000290641
  21. Fan, F., Binkowski, B. F., Butler, B. L., Stecha, P. F., Lewis, M. K. and Wood, K. V. (2008) Novel genetically encoded biosensors using firefly luciferase. ACS Chem. Biol. 3, 346-351. https://doi.org/10.1021/cb8000414
  22. Ferre, S., Baler, R., Bouvier, M., Caron, M. G., Devi, L. A., Durroux, T., Fuxe, K., George, S. R., Javitch, J. A., Lohse, M. J., Mackie, K., Milligan, G., Pfl eger, K. D., Pin, J. P., Volkow, N. D., Waldhoer, M., Woods, A. S. and Franco, R. (2009) Building a new conceptual framework for receptor heteromers. Nat. Chem. Biol. 5, 131-134. https://doi.org/10.1038/nchembio0309-131
  23. Ferre, S., Karcz-Kubicha, M., Hope, B. T., Popoli, P., Burgueno, J., Gutierrez, M. A., Casado, V., Fuxe, K., Goldberg, S. R., Lluis, C., Franco, R. and Ciruela, F. (2002) Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc. Natl. Acad. Sci. USA. 99, 11940-11945. https://doi.org/10.1073/pnas.172393799
  24. Ferre, S., Navarro, G., Casado, V., Cortes, A., Mallol, J., Canela, E. I., Lluis, C. and Franco, R. (2010) G protein-coupled receptor heteromers as new targets for drug development. Prog. Mol. Biol. Transl. Sci. 91, 41-52. https://doi.org/10.1016/S1877-1173(10)91002-8
  25. Fiorentini, C., Busi, C., Gorruso, E., Gotti, C., Spano, P. and Missale, C. (2008) Reciprocal regulation of dopamine D1 and D3 receptor function and traffi cking by heterodimerization. Mol. Pharmacol. 74, 59-69. https://doi.org/10.1124/mol.107.043885
  26. Franco, R., Casado, V., Cortes, A., Mallol, J., Ciruela, F., Ferre, S., Lluis, C. and Canela, E. I. (2008) G-protein-coupled receptor heteromers: function and ligand pharmacology. Br. J. Pharmacol. 153(Suppl 1), S90-98. https://doi.org/10.1038/sj.bjp.0707538
  27. Gagne, A., Banks, P. and Hurt, S. D. (2002) Use of fl uorescence polarization detection for the measurement of fl uopeptidet binding to G protein-coupled receptors. J. Recept. Signal. Transduct. Res. 22, 333-343. https://doi.org/10.1081/RRS-120014605
  28. Gainetdinov, R. R., Premont, R. T., Bohn, L. M., Lefkowitz, R. J. and Caron, M. G. (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu. Rev. Neurosci. 27, 107-144. https://doi.org/10.1146/annurev.neuro.27.070203.144206
  29. Gao, X., Hsu, C. K., Heinz, L. J., Morin, J., Shi, Y., Shukla, N. K., Smiley, D. L., Xu, J., Zhong, B. and Slieker, L. J. (2004) Europiumlabeled melanin-concentrating hormone analogues: ligands for measuring binding to melanin-concentrating hormone receptors 1 and 2. Anal. Biochem. 328, 187-195. https://doi.org/10.1016/j.ab.2004.01.017
  30. Glickman, J. F., Schmid, A. and Ferrand, S. (2008) Scintillation proximity assays in high-throughput screening. Assay. Drug. Dev. Technol. 6, 433-455. https://doi.org/10.1089/adt.2008.135
  31. Gonzalez-Maeso, J., Ang, R. L., Yuen, T., Chan, P., Weisstaub, N. V., Lopez-Gimenez, J. F., Zhou, M., Okawa, Y., Callado, L. F., Milligan, G., Gingrich, J. A., Filizola, M., Meana, J. J. and Sealfon, S. C. (2008) Identifi cation of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452, 93-97. https://doi.org/10.1038/nature06612
  32. Hamdan, F. F., Percherancier, Y., Breton, B. and Bouvier, M. (2006) Monitoring protein-protein interactions in living cells by bioluminescence resonance energy transfer (BRET). Curr Protoc Neurosci. Chapter 5, Unit 5. 23, John Wiley & Sons, Somerset.
  33. Hampton, S. L. and Kinnaird, A. I. (2010) Genetic interventions in mammalian cells; applications and uses in high-throughput screening and drug discovery. Cell Biol. Toxicol. 26, 43-55. https://doi.org/10.1007/s10565-009-9140-z
  34. Handl, H. L. and Gillies, R. J. (2005) Lanthanide-based luminescent assays for ligand-receptor interactions. Life Sci. 77, 361-371. https://doi.org/10.1016/j.lfs.2005.01.009
  35. Handl, H. L., Vagner, J., Yamamura, H. I., Hruby, V. J. and Gillies, R. J. (2004) Lanthanide-based time-resolved fl uorescence of in cyto ligand-receptor interactions. Anal. Biochem. 330, 242-250. https://doi.org/10.1016/j.ab.2004.04.012
  36. Handl, H. L., Vagner, J., Yamamura, H. I., Hruby, V. J. and Gillies, R. J. (2005) Development of a lanthanide-based assay for detection of receptor-ligand interactions at the delta-opioid receptor. Anal. Biochem. 343, 299-307. https://doi.org/10.1016/j.ab.2005.05.040
  37. Hedley, L., Phagoo, S. B. and James, I. F. (1996) Measurement of intracellular calcium in cell populations loaded with aequorin: neurokinin-1 responses in U373MG cells. Anal. Biochem. 236, 270-274. https://doi.org/10.1006/abio.1996.0166
  38. Hemmila, I. I. (1999) LANCEtrade mark: Homogeneous Assay Platform for HTS. J. Biomol. Screen. 4, 303-308. https://doi.org/10.1177/108705719900400604
  39. Hirono, M., Yoshioka, T. and Konishi, S. (2001) GABA(B) receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses. Nat. Neurosci. 4, 1207-1216.
  40. Inglese, J., Samama, P., Patel, S., Burbaum, J., Stroke, I. L. and Appell, K. C. (1998) Chemokine receptor-ligand interactions measured using time-resolved fluorescence. Biochemistry 37, 2372-2377. https://doi.org/10.1021/bi972161u
  41. Jalink, K. and Moolenaar, W. H. (2010) G protein-coupled receptors: the inside story. Bioessays 32, 13-16. https://doi.org/10.1002/bies.200900153
  42. Jansson, C. C., Pohjanoksa, K., Lang, J., Wurster, S., Savola, J. M. and Scheinin, M. (1999) Alpha2-adrenoceptor agonists stimulate high-affi nity GTPase activity in a receptor subtype-selective manner. Eur. J. Pharmacol. 374, 137-146. https://doi.org/10.1016/S0014-2999(99)00306-4
  43. Kamikubo, Y., Tabata, T., Kakizawa, S., Kawakami, D., Watanabe, M., Ogura, A., Iino, M. and Kano, M. (2007) Postsynaptic GABAB receptor signalling enhances LTD in mouse cerebellar Purkinje cells. J. Physiol. 585, 549-563. https://doi.org/10.1113/jphysiol.2007.141010
  44. Le Poul, E., Hisada, S., Mizuguchi, Y., Dupriez, V. J., Burgeon, E. and Detheux, M. (2002) Adaptation of aequorin functional assay to high throughput screening. J. Biomol. Screen. 7, 57-65. https://doi.org/10.1177/108705710200700108
  45. Lee, S., Kim, G. D., Park, W. K., Cho, H., Lee, B. H., Yoo, S. E. and Jae Yang, K. (2006) Development of a time-resolved fl uorometric assay for the high throughput screening of melanin concentrating hormone receptor antagonists. J. Pharmacol. Toxicol. Methods. 53, 242-247. https://doi.org/10.1016/j.vascn.2005.09.001
  46. Lefkowitz, R. J. (2004) Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol. Sci. 25, 413-422. https://doi.org/10.1016/j.tips.2004.06.006
  47. Lin, F. T., Miller, W. E., Luttrell, L. M. and Lefkowitz, R. J. (1999) Feedback regulation of beta-arrestin1 function by extracellular signal-regulated kinases. J. Biol. Chem. 274, 15971-15974. https://doi.org/10.1074/jbc.274.23.15971
  48. Liu, J., Gallagher, M., Horlick, R. A., Robbins, A. K. and Webb, M. L. (1998) A time resolved fluorometric assay for galanin receptors. J. Biomol. Screen 3, 19-27. https://doi.org/10.1177/108705719800300103
  49. Lohse, M. J., Benovic, J. L., Codina, J., Caron, M. G. and Lefkowitz, R. J. (1990). beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248, 1547-1550. https://doi.org/10.1126/science.2163110
  50. Luttrell, L. M. and Lefkowitz, R. J. (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J. Cell. Sci. 115, 455-465.
  51. Maeda, A., Nishimura, S., Kameda, K., Imagawa, T., Shigekawa, M. and Barsoumian, E. L. (1996) Generation of cell transfectants expressing cardiac calcium ion channel and calcium indicator protein aequorin. Anal. Biochem. 242, 31-39. https://doi.org/10.1006/abio.1996.0424
  52. Marcellino, D., Ferre, S., Casado, V., Cortes, A., Le Foll, B., Mazzola, C., Drago, F., Saur, O., Stark, H., Soriano, A., Barnes, C., Goldberg, S. R., Lluis, C., Fuxe, K. and Franco, R. (2008) Identifi cation of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J. Biol. Chem. 283, 26016-26025. https://doi.org/10.1074/jbc.M710349200
  53. Maurel, D., Comps-Agrar, L., Brock, C., Rives, M. L., Bourrier, E., Ayoub, M. A., Bazin, H., Tinel, N., Durroux, T., Prezeau, L., Trinquet, E. and Pin, J. P. (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat. Methods 5, 561-567. https://doi.org/10.1038/nmeth.1213
  54. Maurel, D., Kniazeff, J., Mathis, G., Trinquet, E., Pin, J. P. and Ansanay, H. (2004) Cell surface detection of membrane protein interaction with homogeneous time-resolved fl uorescence resonance energy transfer technology. Anal. Biochem. 329, 253-262. https://doi.org/10.1016/j.ab.2004.02.013
  55. McGrath, J. C., Arribas, S. and Daly, C. J. (1996) Fluorescent ligands for the study of receptors [published erratum appears in Trends Pharmacol Sci 1997 May;18(5):181]. Trends Pharmacol. Sci. 17, 393-399. https://doi.org/10.1016/S0165-6147(96)40004-9
  56. McGuinness, D., Malikzay, A., Visconti, R., Lin, K., Bayne, M., Monsma, F. and Lunn, C. A. (2009) Characterizing cannabinoid CB2 receptor ligands using DiscoveRx PathHunter beta-arrestin assay. J. Biomol. Screen 14, 49-58.
  57. Oakley, R. H., Hudson, C. C., Cruickshank, R. D., Meyers, D. M., Payne, R. E. Jr., Rhem, S. M. and Loomis, C. R. (2002) The cellular distribution of fl uorescently labeled arrestins provides a robust, sensitive, and universal assay for screening G protein-coupled receptors. Assay Drug Dev. Technol. 1, 21-30. https://doi.org/10.1089/154065802761001275
  58. Perry, S. J. and Lefkowitz, R. J. (2002) Arresting developments in heptahelical receptor signaling and regulation. Trends Cell Biol. 12, 130-138. https://doi.org/10.1016/S0962-8924(01)02239-5
  59. Peters, M. F., Knappenberger, K. S., Wilkins, D., Sygowski, L. A., Lazor, L. A., Liu, J. and Scott, C. W. (2007) Evaluation of cellular dielectric spectroscopy, a whole-cell, label-free technology for drug discovery on Gi-coupled GPCRs. J. Biomol. Screen 12, 312-319. https://doi.org/10.1177/1087057106298637
  60. Pinilla, C., Appel, J. R., Borras, E. and Houghten, R. A. (2003) Advances in the use of synthetic combinatorial chemistry: mixture-based libraries. Nat. Med 9, 118-122. https://doi.org/10.1038/nm0103-118
  61. Rink, T. J. (1990) Receptor-mediated calcium entry. FEBS Lett. 268, 381-385. https://doi.org/10.1016/0014-5793(90)81290-5
  62. Rives, M. L., Vol, C., Fukazawa, Y., Tinel, N., Trinquet, E., Ayoub, M. A., Shigemoto, R., Pin, J. P. and Prezeau, L. (2009) Crosstalk between GABAB and mGlu1a receptors reveals new insight into GPCR signal integration. EMBO J. 28, 2195-2208. https://doi.org/10.1038/emboj.2009.177
  63. Rozenfeld, R. and Devi, L. A. (2010) Receptor heteromerization and drug discovery. Trends Pharmacol. Sci. 31, 124-130. https://doi.org/10.1016/j.tips.2009.11.008
  64. Rubenstein, K. (2008). GPCRs: Dawn of a new era? Insight Pharma. Reports., Needham.
  65. Sanger, G. J., Westaway, S. M., Barnes, A. A., Macpherson, D. T., Muir, A. I., Jarvie, E. M., Bolton, V. N., Cellek, S., Naslund, E., Hellstrom, P. M., Borman, R. A., Unsworth, W. P., Matthews, K. L. and Lee, K. (2009) GSK962040: a small molecule, selective motilin receptor agonist, effective as a stimulant of human and rabbit gastrointestinal motility. Neurogastroenterol. Motil. 21, 657-664, e630-651. https://doi.org/10.1111/j.1365-2982.2009.01270.x
  66. Schroder, R., Janssen, N., Schmidt, J., Kebig, A., Merten, N., Hennen, S., Muller, A., Blattermann, S., Mohr-Andra, M., Zahn, S., Wenzel, J., Smith, N. J., Gomeza, J., Drewke, C., Milligan, G., Mohr, K. and Kostenis, E. (2010) Deconvolution of complex G protein-coupled receptor signaling in live cells using dynamic mass redistribution measurements. Nat. Biotechnol. 28, 943-949. https://doi.org/10.1038/nbt.1671
  67. Shenoy, S. K. and Lefkowitz, R. J. (2003) Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor traffi cking and signalling. Biochem. J. 375, 503-515. https://doi.org/10.1042/BJ20031076
  68. Small, K. M., Schwarb, M. R., Glinka, C., Theiss, C. T., Brown, K. M., Seman, C. A. and Liggett, S. B. (2006) Alpha2A- and alpha2C-adrenergic receptors form homo- and heterodimers: the heterodimeric state impairs agonist-promoted GRK phosphorylation and beta-arrestin recruitment. Biochemistry 45, 4760-4767. https://doi.org/10.1021/bi052074z
  69. Soriano, A., Ventura, R., Molero, A., Hoen, R., Casado, V., Cortes, A., Fanelli, F., Albericio, F., Lluis, C., Franco, R. and Royo, M. (2009) Adenosine A2A receptor-antagonist/dopamine D2 receptor-agonist bivalent ligands as pharmacological tools to detect A2A-D2 receptor heteromers. J. Med. Chem. 52, 5590-5602. https://doi.org/10.1021/jm900298c
  70. Stables, J., Green, A., Marshall, F., Fraser, N., Knight, E., Sautel, M., Milligan, G., Lee, M. and Rees, S. (1997) A bioluminescent assay for agonist activity at potentially any G-protein-coupled receptor. Anal. Biochem. 252, 115-126. https://doi.org/10.1006/abio.1997.2308
  71. Tabata, T., Araishi, K., Hashimoto, K., Hashimotodani, Y., van der Putten, H., Bettler, B. and Kano, M. (2004) Ca2+ activity at GABAB receptors constitutively promotes metabotropic glutamate signaling in the absence of GABA. Proc. Natl. Acad. Sci. USA. 101, 16952-16957. https://doi.org/10.1073/pnas.0405387101
  72. Tamayama, T., Maemura, K., Kanbara, K., Hayasaki, H., Yabumoto, Y., Yuasa, M. and Watanabe, M. (2005) Expression of GABA(A) and GABA(B) receptors in rat growth plate chondrocytes: activation of the GABA receptors promotes proliferation of mouse chondrogenic ATDC5 cells. Mol. Cell Biochem. 273, 117-126. https://doi.org/10.1007/s11010-005-8159-6
  73. Toms, N. J. and Roberts, P. J. (1999) Group 1 mGlu receptors elevate [Ca2+]i in rat cultured cortical type 2 astrocytes: [Ca2+]i synergy with adenosine A1 receptors. Neuropharmacology 38, 1511-1517. https://doi.org/10.1016/S0028-3908(99)00090-8
  74. Verdonk, E., Johnson, K., McGuinness, R., Leung, G., Chen, Y. W., Tang, H. R., Michelotti, J. M. and Liu, V. F. (2006) Cellular dielectric spectroscopy: a label-free comprehensive platform for functional evaluation of endogenous receptors. Assay Drug Dev. Technol. 4, 609-619. https://doi.org/10.1089/adt.2006.4.609
  75. Vidi, P. A. and Watts, V. J. (2009) Fluorescent and bioluminescent protein-fragment complementation assays in the study of G protein-coupled receptor oligomerization and signaling. Mol. Pharmacol. 75, 733-739. https://doi.org/10.1124/mol.108.053819
  76. Vilardaga, J. P., Nikolaev, V. O., Lorenz, K., Ferrandon, S., Zhuang, Z. and Lohse, M. J. (2008) Conformational cross-talk between alpha2A-adrenergic and mu-opioid receptors controls cell signaling. Nat. Chem. Biol. 4, 126-131. https://doi.org/10.1038/nchembio.64
  77. Waldhoer, M., Fong, J., Jones, R. M., Lunzer, M. M., Sharma, S. K., Kostenis, E., Portoghese, P. S. and Whistler, J. L. (2005) A heterodimer-selective agonist shows in vivo relevance of G proteincoupled receptor dimers. Proc. Natl. Acad. Sci. USA. 102, 9050-9055. https://doi.org/10.1073/pnas.0501112102
  78. Wang, H. B., Guan, J. S., Bao, L. and Zhang, X. (2008) Distinct subcellular distribution of delta-opioid receptor fused with various tags in PC12 cells. Neurochem. Res. 33, 2028-2034. https://doi.org/10.1007/s11064-008-9678-9
  79. Wu, S. and Liu, B. (2005). Application of scintillation proximity assay in drug discovery. Bio. Drugs 19, 383-392.
  80. Xie, Z., Bhushan, R. G., Daniels, D. J. and Portoghese, P. S. (2005) Interaction of bivalent ligand KDN21 with heterodimeric delta-kappa opioid receptors in human embryonic kidney 293 cells. Mol. Pharmacol. 68, 1079-1086. https://doi.org/10.1124/mol.105.012070
  81. Zhao, X., Jones, A., Olson, K. R., Peng, K., Wehrman, T., Park, A., Mallari, R., Nebalasca, D., Young, S. W. and Xiao, S. H. (2008) A homogeneous enzyme fragment complementation-based beta-arrestin translocation assay for high-throughput screening of G-protein-coupled receptors. J. Biomol. Screen 13, 737-747. https://doi.org/10.1177/1087057108321531

Cited by

  1. Development of an aequorin-based assay for the screening of corticotropin-releasing factor receptor antagonists vol.16, pp.11, 2015, https://doi.org/10.5762/KAIS.2015.16.11.7575
  2. Review cyclic peptides on a merry-go-round; towards drug design vol.104, pp.5, 2015, https://doi.org/10.1002/bip.22669
  3. Utilization of an Intracellular Calcium Mobilization Assay for the Screening of Transduced FK506-Binding Proteins vol.19, pp.7, 2011, https://doi.org/10.1089/adt.2021.065