DOI QR코드

DOI QR Code

Structural Aspects of GPCR-G Protein Coupling

  • Received : 2013.08.14
  • Accepted : 2013.09.17
  • Published : 2013.09.30

Abstract

G protein-coupled receptors (GPCRs) are membrane receptors; approximately 40% of drugs on the market target GPCRs. A precise understanding of the activation mechanism of GPCRs would facilitate the development of more effective and less toxic drugs. Heterotrimeric G proteins are important molecular switches in GPCR-mediated signal transduction. An agonist-activated receptor interacts with specific sites on G proteins and promotes the release of GDP from the $G{\alpha}$ subunit. Because of the important biological role of the GPCR-G protein coupling, conformational changes in the G protein upon receptor coupling have been of great interest. One of the most important questions was the interface between the GPCR and G proteins and the structural mechanism of GPCR-induced G protein activation. A number of biochemical and biophysical studies have been performed since the late 80s to address these questions; there was a significant breakthrough in 2011 when the crystal structure of a GPCR-G protein complex was solved. This review discusses the structural aspects of GPCR-G protein coupling by comparing the results of previous biochemical and biophysical studies to the GPCR-G protein crystal structure.

Keywords

References

  1. Lundstrom, K. (2009) An overview on GPCRs and drug discovery: structure-based drug design and structural biology on GPCRs. Methods Mol Biol., 552, 51-66. https://doi.org/10.1007/978-1-60327-317-6_4
  2. Nikiforovich, G.V., Taylor, C.M. and Marshall, G.R. (2007) Modeling of the complex between transducin and photoactivated rhodopsin, a prototypical G-protein-coupled receptor. Biochemistry, 46, 4734-4744. https://doi.org/10.1021/bi700185p
  3. Wang, X., Kim, S.H., Ablonczy, Z., Crouch, R.K. and Knapp, D.R. (2004) Probing rhodopsin-transducin interactions by surface modification and mass spectrometry. Biochemistry, 43, 11153-11162. https://doi.org/10.1021/bi049642f
  4. Oldham, W.M. and Hamm, H.E. (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol., 9, 60-71. https://doi.org/10.1038/nrm2299
  5. Baltoumas, F.A., Theodoropoulou, M.C. and Hamodrakas, S.J. (2013) Interactions of the α-subunits of heterotrimeric Gproteins with GPCRs, effectors and RGS proteins: a critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials. J. Struct. Biol., 182, 209-218. https://doi.org/10.1016/j.jsb.2013.03.004
  6. Tesmer, J.J. (2010) The quest to understand heterotrimeric G protein signaling. Nat. Struct. Mol. Biol., 17, 650-652. https://doi.org/10.1038/nsmb0610-650
  7. Jones, J.C., Duffy, J.W., Machius, M., Temple, B.R., Dohlman, H.G. and Jones, A.M. (2011) The crystal structure of a self-activating G protein alpha subunit reveals its distinct mechanism of signal initiation. Sci. Signaling, 4, ra8. https://doi.org/10.1126/scisignal.2001446
  8. Lambright, D.G., Sondek, J., Bohm, A., Skiba, N.P., Hamm, H.E. and Sigler, P.B. (1996) The 2.0A crystal structure of a heterotrimeric G protein. Nature, 379, 311-319. https://doi.org/10.1038/379311a0
  9. Sondek, J., Bohm, A., Lambright, D.G., Hamm, H.E. and Sigler, P.B. (1996) Crystal structure of a G-protein beta gamma dimer at 2.1A resolution. Nature, 379, 369-374. https://doi.org/10.1038/379369a0
  10. Wall, M.A., Coleman, D.E., Lee, E., Iiguez-Lluhi, J.A., Posner, B.A., Gilman, A.G. and Sprang, S.R. (1995) The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell, 83, 1047-1058. https://doi.org/10.1016/0092-8674(95)90220-1
  11. Lambright, D.G., Noel, J.P., Hamm, H.E. and Sigler, P.B. (1994) Structural determinants for activation of the alpha-subunit of a heterotrimeric G protein. Nature, 369, 621-628. https://doi.org/10.1038/369621a0
  12. Sondek, J., Lambright, D.G., Noel, J.P., Hamm, H.E. and Sigler, P.B. (1994) GTPase mechanism of Gproteins from the 1.7-A crystal structure of transducin alpha-GDP-AIF-4. Nature, 372, 276-279. https://doi.org/10.1038/372276a0
  13. Noel, J.P., Hamm, H.E. and Sigler, P.B. (1993) The 2.2A crystal structure of transducin-alpha complexed with GTP gamma S. Nature, 366, 654-663. https://doi.org/10.1038/366654a0
  14. Sunahara, R.K., Tesmer, J.J., Gilman, A.G. and Sprang, S.R. (1997) Crystal structure of the adenylyl cyclase activator Gsalpha. Science, 278, 1943-1947. https://doi.org/10.1126/science.278.5345.1943
  15. Mixon, M.B., Lee, E., Coleman, D.E., Berghuis, A.M., Gilman, A.G. and Sprang, S.R. (1995) Tertiary and quaternary structural changes in Gi alpha 1 induced by GTP hydrolysis. Science, 270, 954-960. https://doi.org/10.1126/science.270.5238.954
  16. Coleman, D.E., Berghuis, A.M., Lee, E., Linder, M.E., Gilman, A.G. and Sprang, S.R. (1994) Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. Science, 265, 1405-1412. https://doi.org/10.1126/science.8073283
  17. Venkatakrishnan, A.J., Deupi, X., Lebon, G., Tate, C.G., Schertler, G.F. and Babu, M.M. (2013) Molecular signatures of G-protein-coupled receptors. Nature, 494, 185-194. https://doi.org/10.1038/nature11896
  18. Rasmussen, S.G., DeVree, B.T., Zou, Y., Kruse, A.C., Chung, K.Y., Kobilka, T.S., Thian, F.S., Chae, P.S., Pardon, E., Calinski, D., Mathiesen, J.M., Shah, S.T., Lyons, J.A., Caffrey, M., Gellman, S.H., Steyaert, J., Skiniotis, G., Weis, W.I., Sunahara, R.K. and Kobilka, B.K. (2011) Grystal structure of the $\beta2$ adrenergic receptor-Gs protein complex. Nature, 477, 549-555. https://doi.org/10.1038/nature10361
  19. Preininger, A.M., Van Eps, N., Yu, N.J., Medkova, M., Hubbell, W.L. and Hamm, H.E. (2003) The myristoylated amino terminus of Galpha(i)(1) plays a critical role in the structure and function of Galpha(i)(1) subunits in solution. Biochemistry, 42, 7931-7941. https://doi.org/10.1021/bi0345438
  20. Franco, M., Chardin, P., Chabre, M. and Paris, S. (1996) Myristoylation-facilitated binding of the G protein ARF1GDP to membrane phospholipids is required for its activation by a soluble nucleotide exchange factor. J. Biol. Chem., 271, 1573-1578. https://doi.org/10.1074/jbc.271.3.1573
  21. Degtyarev, M.Y., Spiegel, A.M. and Jones, T.L. (1994) Palmitoylation of a G protein alpha i subunit requires membrane localization not myristoylation. J. Biol. Chem., 269, 30898-30903.
  22. Hamm, H.E., Deretic, D., Arendt, A., Hargrave, P.A., Koenig, B. and Hofmann, K.P. (1988) Site of G protein binding to rhodopsin mapped with synthetic peptides from the alpha subunit. Science, 241, 832-835. https://doi.org/10.1126/science.3136547
  23. Feldman, D.S., Zamah, A.M., Pierce, K.L., Miller, W.E., Kelly, F., Rapacciuolo, A., Rockman, H.A., Koch, W.J. and Luttrell, L.M. (2002) Selective inhibition of heterotrimeric Gs signaling. Targeting the receptor-G protein interface using a peptide minigene encoding the Galpha(s) carboxyl terminus. J. Biol. Chem., 277, 28631-28640. https://doi.org/10.1074/jbc.M204753200
  24. Aris, L., Gilchrist, A., Rens-Domiano, S., Meyer, C., Schatz, P.J., Dratz, E.A. and Hamm, H.E. (2001) Structural requirements for the stabilization of metarhodopsin II by the C terminus of the alpha subunit of transducin. J. Biol. Chem., 276, 2333-2339. https://doi.org/10.1074/jbc.M002533200
  25. Schwindinger, W.F., Miric, A., Zimmerman, D. and Levine, M.A. (1994) A novel Gs alpha mutant in a patient with Albright hereditary osteodystrophy uncouples cell surface receptors from adenylyl cyclase. J. Biol. Chem., 269, 25387-25391.
  26. Natochin, M., Muradov, K.G., McEntaffer, R.L. and Artemyev, N.O. (2000) Rhodopsin recognition by mutant G(s)alpha containing C-terminal residues of transducin. J. Biol. Chem., 275, 2669-2675. https://doi.org/10.1074/jbc.275.4.2669
  27. Hu, J., Wang, Y., Zhang, X., Lloyd, J.R., Li, J.H., Karpiak, J., Costanzi, S. and Wess, J. (2010) Structural basis of G proteincoupled receptor-G protein interactions. Nat. Chem. Biol., 6, 541-548. https://doi.org/10.1038/nchembio.385
  28. Cai, K., Itoh, Y. and Khorana, H.G. (2001) Mapping of contact sites in complex formation between transducin and lightactivated rhodopsin by covalent crosslinking: use of a photoactivatable reagent. Proc. Natl. Acad. Sci. U. S. A., 98, 4877-4882. https://doi.org/10.1073/pnas.051632898
  29. Scheerer, P., Park, J.H., Hildebrand, P.W., Kim, Y.J., Krauss, N., Choe, H.W., Hofmann, K.P. and Ernst, O.P. (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature, 455, 497-502. https://doi.org/10.1038/nature07330
  30. Choe, H.W., Kim, Y.J., Park, J.H., Morizumi, T., Pai, E.F., Krauss, N., Hofmann, K.P., Scheerer, P. and Ernst, O.P. (2011) Crystal structure of metarhodopsin II. Nature, 471, 651-655. https://doi.org/10.1038/nature09789
  31. Taylor, J.M., Jacob-Mosier, G.G., Lawton, R.G., Remmers, A.E. and Neubig, R.R. (1994) Binding of an alpha 2 adrenergic receptor third intracellular loop peptide to G beta and the amino terminus of G alpha. J. Biol. Chem., 269, 27618-27624.
  32. Itoh, Y., Cai, K. and Khorana, H.G. (2001) Mapping of contact sites in complex formation between light-activated rhodopsin and transducin by covalent crosslinking: use of a chemically preactivated reagent. Proc. Natl. Acad. Sci. U. S. A., 98, 4883-4887. https://doi.org/10.1073/pnas.051632998
  33. Natochin, M., Granovsky, A.E., Muradov, K.G. and Artemyev, N.O. (1999) Roles of the transducin alpha-subunit alpha4-helixlalpha4-beta6 loop in the receptor and effector interactions. J. Biol. Chem., 274, 7865-7869. https://doi.org/10.1074/jbc.274.12.7865
  34. Bae, H., Cabrera-Vera, T.M., Depree, K.M., Graber, S.G. and Hamm, H.E. (1999) Two amino acids within the alpha4 helix of Galphai1 mediate coupling with 5-hydroxytryptamine1B receptors. J. Biol. Chem., 274, 14963-14971. https://doi.org/10.1074/jbc.274.21.14963
  35. Johnston, C.A. and Siderovski, D.P. (2007) Structural basis for nucleotide exchange on G alpha i subunits and receptor coupling specificity. Proc. Natl. Acad. Sci. U. S. A., 104, 2001-2006. https://doi.org/10.1073/pnas.0608599104
  36. Grishina, G. and Berlot, C.H. (2000) A surface-exposed region of G(salpha) in which substitutions decrease receptor-mediated activation and increase receptor affinity. Mol. Pharmacol., 57, 1081-1092.
  37. Yu, M.Y., Ho, M.K., Liu, A.M. and Wong, Y.H. (2008) Mutations on the Switch III region and the alpha3 helix of Galpha16 differentially affect receptor coupling and regulation of downstream effectors. J. Mol. Signaling, 3, 17. https://doi.org/10.1186/1750-2187-3-17
  38. Westfield, G.H., Rasmussen, S.G., Su, M., Dutta, S., DeVree, B.T., Chung, K.Y., Calinski, D., Velez-Ruiz, G., Oleskie, A.N., Pardon, E., Chae, P.S., Liu, T., Li, S., Woods, V.L. Jr., Steyaert, J., Kobilka, B.K., Sunahara, R.K. and Skiniotis, G. (2011) Structural flexibility of the G alpha s alpha-helical domain in the beta2-adrenoceptor Gs complex. Proc. Natl. Acad. Sci. U. S. A., 108, 16086-16091. https://doi.org/10.1073/pnas.1113645108
  39. Abdulaev, N.G., Ngo, T., Ramon, E., Brabazon, D.M., Marino, J.P. and Ridge, K.D. (2006) The receptor-bound “empty pocket” state of the heterotrimeric G-protein alpha-subunit is conformationally dynamic. Biochemistry, 45, 12986-12997. https://doi.org/10.1021/bi061088h
  40. Van Eps, N., Preininger, A.M., Alexander, N., Kaya, A.I., Meier, S., Meiler, J., Hamm, H.E. and Hubbell, W.L. (2011) Interaction of a G protein with an activated receptor opens the interdomain interface in the alpha subunit. Proc. Natl. Acad. Sci. U. S. A., 108, 9420-9424. https://doi.org/10.1073/pnas.1105810108
  41. Dratz, E.A., Furstenau, J.E., Lambert, C.G., Thireault, D.L., Rarick, H., Schepers, T., Pakhlevaniants, S. and Hamm, H.E. (1993) NMR structure of a receptor-bound G-protein peptide. Nature, 363, 276-281. https://doi.org/10.1038/363276a0
  42. Kisselev, O.G., Kao, J., Ponder, J.W., Fann, Y.C., Gautam, N. and Marshall, G.R. (1998) Light-activated rhodopsin induces structural binding motif in G protein alpha subunit. Proc. Natl. Acad. Sci. U. S. A., 95, 4270-4275. https://doi.org/10.1073/pnas.95.8.4270
  43. Koenig, B.W., Kontaxis, G., Mitchell, D.C., Louis, J.M., Litman, B.J. and Bax, A. (2002) Structure and orientation of a G protein fragment in the receptor bound state from residual dipolar couplings. J. Mol. Biol., 322, 441-461. https://doi.org/10.1016/S0022-2836(02)00745-3
  44. Brabazon, D.M., Abdulaev, N.G., Marino, J.P. and Ridge, K.D. (2003) Evidence for structural changes in carboxyl-terminal peptides of transducin alpha-subunit upon binding a soluble mimic of light-activated rhodopsin. Biochemistry, 42, 302-311. https://doi.org/10.1021/bi0268899
  45. Oldham, W.M., Van Eps, N., Preininger, A.M., Hubbell, W.L. and Hamm, H.E. (2006) Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nat. Struct. Mol. Biol., 13, 772-777. https://doi.org/10.1038/nsmb1129
  46. Orban, T., Jastrzebska, B., Gupta, S., Wang, B., Miyagi, M., Chance, M.R. and Palczewski, K. (2012) Conformational dynamics of activation for the pentameric complex of dimeric G protein-coupled receptor and heterotrimeric G protein. Structure, 20, 826-840. https://doi.org/10.1016/j.str.2012.03.017
  47. Chung, K.Y., Rasmussen, S.G., Liu, T., Li, S., DeVree, B.T., Chae, P.S., Calinski, D., Kobilka, B.K., Woods, V.L. Jr. and Sunahara, R.K. (2011) Conformational changes in the G protein Gs induced by the $\beta2$ adrenergic receptor. Nature, 477, 611-615. https://doi.org/10.1038/nature10488
  48. Natochin, M., Moussaif, M. and Artemyev, N.O. (2001) Probing the mechanism of rhodopsin-catalyzed transducin activation. J. Neurochem., 77, 202-210. https://doi.org/10.1046/j.1471-4159.2001.t01-1-00221.x
  49. Marin, E.P., Krishna, A.G. and Sakmar, T.P. (2001) Rapid activation of transducin by mutations distant from the nucleotidebinding site: evidence for a mechanistic model of receptor-catalyzed nucleotide exchange by G proteins. J. Biol. Chem., 276, 27400-27405. https://doi.org/10.1074/jbc.C100198200
  50. Marin, E.P., Krishna, A.G. and Sakmar, T.P. (2002) Disruption of the alpha5 helix of transducin impairs rhodopsin-catalyzed nucleotide exchange. Biochemistry, 41, 6988-6994. https://doi.org/10.1021/bi025514k
  51. Kapoor, N., Menon, S.T., Chauhan, R., Sachdev, P. and Sakmar, T.P. (2009) Structural evidence for a sequential release mechanism for activation of heterotrimeric G proteins. J. Mol. Biol., 393, 882-897. https://doi.org/10.1016/j.jmb.2009.08.043
  52. Preininger, A.M., Parello, J., Meier, S.M., Liao, G. and Hamm, H.E. (2008) Receptor-mediated changes at the myristoylated amino terminus of Galpha(il) proteins. Biochemistry, 47, 10281-10293. https://doi.org/10.1021/bi800741r
  53. Kisselev, O.G. and Downs, M.A. (2003) Rhodopsin controls a conformational switch on the transducin gamma subunit. Structure, 11, 367-373. https://doi.org/10.1016/S0969-2126(03)00045-5
  54. Cherfils, J. and Chabre, M. (2003) Activation of G-protein Galpha subunits by receptors through Galpha-Gbeta and Galpha-Ggamma interactions. Trends Biochem. Sci., 28, 13-17. https://doi.org/10.1016/S0968-0004(02)00006-3
  55. Rondard, P., Iiri, T., Srinivasan, S., Meng, E., Fujita, T. and Bourne, H.R. (2001) Mutant G protein alpha subunit activated by Gbeta gamma: a model for receptor activation? Proc. Natl. Acad. Sci. U. S. A., 98, 6150-6155. https://doi.org/10.1073/pnas.101136198
  56. Patowary, S., Alvarez-Curto, E., Xu, T.R., Holz, J.D., Oliver, J.A., Milligan, G. and Raicu, V. (2013) The muscarinic M3 acetylcholine receptor exists as two differently sized complexes at the plasma membrane. Biochem. J., 452, 303-312. https://doi.org/10.1042/BJ20121902
  57. Watts, A.O., van Lipzig, M.M., Jaeger, W.C., Seeber, R.M., van Zwam, M., Vinet, J., van der Lee, M.M., Siderius, M., Zaman, G.J., Boddeke, H.W., Smit, M.J., Pfleger, K.D., Leurs, R. and Vischer, H.F. (2013) Identification and profiling of CXCR3-CXCR4 chemokine receptor heteromer complexes. Br. J. Pharmacol., 168, 1662-1674. https://doi.org/10.1111/bph.12064
  58. Teitler, M. and Klein, M.T. (2012) A new approach for studying GPCR dimers: drug-induced inactivation and reactivation to reveal GPCR dimer function in vitro, in primary culture, and in vivo. Pharmacol. Ther., 133, 205-217. https://doi.org/10.1016/j.pharmthera.2011.10.007
  59. Ayoub, M.A., Al-Senaidy, A. and Pin, J.P. (2012) Receptor-G protein interaction studied by bioluminescence resonance energy transfer: lessons from protease-activated receptor 1. Front. Endocrinol. (Lausanne), 3, 82.
  60. Qin, K., Dong, C., Wu, G. and Lambert, N.A. (2011) Inactivestate preassembly of G(q)-coupled receptors and G(q) heterotrimers. Nat. Chem. Biol., 7, 740-747. https://doi.org/10.1038/nchembio.642
  61. Qin, K., Sethi, P.R. and Lambert, N.A. (2008) Abundance and stability of complexes containing inactive G protein-coupled receptors and G proteins. FASEB J., 22, 2920-2927. https://doi.org/10.1096/fj.08-105775
  62. Gales, C., Van Durm, J.J., Schaak, S., Pontier, S., Percherancier, Y., Audet, M., Paris, H. and Bouvier, M. (2006) Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat. Struct. Mol. Biol., 13, 778-786. https://doi.org/10.1038/nsmb1134
  63. Challiss, R.A. and Wess, J. (2011) Receptors: GPCR-G protein preassembly? Nat. Chem. Biol., 7, 657-658. https://doi.org/10.1038/nchembio.665

Cited by

  1. RGS6 as a Novel Therapeutic Target in CNS Diseases and Cancer vol.18, pp.3, 2016, https://doi.org/10.1208/s12248-016-9899-9
  2. Tissue-specific transcriptome analyses provide new insights into GPCR signalling in adult Schistosoma mansoni vol.14, pp.1, 2018, https://doi.org/10.1371/journal.ppat.1006718