DOI QR코드

DOI QR Code

A Machine Learning Based Method for the Prediction of G Protein-Coupled Receptor-Binding PDZ Domain Proteins

  • Eo, Hae-Seok (School of Biological Sciences, Seoul National University) ;
  • Kim, Sungmin (Interdisciplinary Program in Bioinformatics, Seoul National University) ;
  • Koo, Hyeyoung (Department of Biological Science, Sangji University) ;
  • Kim, Won (School of Biological Sciences, Seoul National University)
  • Received : 2008.11.13
  • Accepted : 2009.05.12
  • Published : 2009.06.30

Abstract

G protein-coupled receptors (GPCRs) are part of multi-protein networks called 'receptosomes'. These GPCR interacting proteins (GIPs) in the receptosomes control the targeting, trafficking and signaling of GPCRs. PDZ domain proteins constitute the largest protein family among the GIPs, and the predominant function of the PDZ domain proteins is to assemble signaling pathway components into close proximity by recognition of the last four C-terminal amino acids of GPCRs. We present here a machine learning based approach for the identification of GPCR-binding PDZ domain proteins. In order to characterize the network of interactions between amino acid residues that contribute to the stability of the PDZ domain-ligand complex and to encode the complex into a feature vector, amino acid contact matrices and physicochemical distance matrix were constructed and adopted. This novel machine learning based method displayed high performance for the identification of PDZ domain-ligand interactions and allowed the identification of novel GPCR-PDZ domain protein interactions.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Altuvia, Y., and Margalit, H. (2004). A structure-based approach for prediction of MHC-binding peptides. Methods 34, 454-459 https://doi.org/10.1016/j.ymeth.2004.06.008
  2. Basdevant, N., Weinstein, H., and Ceruso, M. (2006). Thermodynamic basis for promiscuity and selectivity in protein-protein interactions: PDZ domains, a case study. J. Am. Chem. Soc. 128, 12766-12777 https://doi.org/10.1021/ja060830y
  3. Beuming, T., Skrabanek, L., Niv, M.Y., Mukherjee, P., and Weinstein, H. (2005). PDZBase: a protein-protein interaction database for PDZ-domains. Bioinformatics 21, 827-828 https://doi.org/10.1093/bioinformatics/bti098
  4. Bezprozvanny, I., and Maximov, A. (2001). Classification of PDZ domains. FEBS Lett. 509, 457-462 https://doi.org/10.1016/S0014-5793(01)03214-8
  5. Bockaert, J., Roussignol, G., B$\acute{e}$camel, C., Gavarini, S., Joubert, L., Dumuis, A., Fagni, L., and Marin, P. (2004). GPCR-interacting proteins (GIPs): nature and functions. Biochem. Soc. Trans. 32, 851-855 https://doi.org/10.1042/BST0320851
  6. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.C., Estreicher, A., Gasteiger, E., Martin, M.J., Michoud, K., O'Donovan, C., Phan, I., et al. (2003). The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365-370 https://doi.org/10.1093/nar/gkg095
  7. Chi, C.N., Engstr$\ddot{o}$m, $\AA$., Gianni, S., Larsson, M., and Jemth, P. (2006). Two conserved residues govern the salt and pH dependencies of the binding reaction of a PDZ domain. J. Biol. Chem. 281, 36811-36818 https://doi.org/10.1074/jbc.M607883200
  8. Day, P., and Kobilka, B. (2006). PDZ-domain arrays for identifying components of GPCR signaling complexes. Trends Pharmacol. Sci. 27, 509-511 https://doi.org/10.1016/j.tips.2006.08.003
  9. Doyle, D.A., Lee, A., Lewis, J., Kim, E., Sheng, M., and Mackinnon, R. (1996). Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85, 1067-1076 https://doi.org/10.1016/S0092-8674(00)81307-0
  10. Eo, H.S., Choi, J.P., Noh, S.J., Hur C.G., and Kim, W. (2007). A combined approach for the classification of G protein-coupled receptors and its application to detect GPCR splice variants. Comput. Biol. Chem. 31, 246-256 https://doi.org/10.1016/j.compbiolchem.2007.05.002
  11. Fang, M., Tao, Y.X., He, F., Zhang, M., Levine, C.F., Mao, P., Tao, F., Chou, C.L., Sadegh-Nasseri, S., and Johns, R.A. (2003). Synaptic PDZ domain-mediated protein interactions are disrupted by inhalational anesthetics. J. Biol. Chem. 278, 36669-36675 https://doi.org/10.1074/jbc.M303520200
  12. Ferraro, E., Via, A., Ausiello, G., and Helmer-Citterich, M. (2006). A novel structure-based encoding for machine-learning applied to the inference of SH3 domain specificity. Bioinformatics 22, 2333-2339 https://doi.org/10.1093/bioinformatics/btl403
  13. Giallourakis, C., Cao, Z., Green, T., Wachtel, H., Xie, X., Lopez- Illasaca, M., Daly, M., Rioux, J., and Xavier, R. (2006). A molecular-properties-based approach to understanding PDZ domain proteins and PDZ ligands. Genome Res. 16, 1056-1072 https://doi.org/10.1101/gr.5285206
  14. Grantham, R. (1974). Amino acid difference formula to help explain protein evolution. Science 185, 862-864 https://doi.org/10.1126/science.185.4154.862
  15. Hanyaloglu, A.C., and von Zastrow, M. (2008). Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu. Rev. Pharmacol. Toxicol. 48, 537-568 https://doi.org/10.1146/annurev.pharmtox.48.113006.094830
  16. Hung, A.Y., and Sheng, M. (2002). PDZ domains: Structural modules for protein complex assembly. J. Biol. Chem. 277, 5699-5702 https://doi.org/10.1074/jbc.R100065200
  17. Joachims, T. (1999). Making large-scale SVM learning practical. Advances in kernel methods-support vector machines (MITPress)
  18. Kreienkamp, H.J. (2002). Organisation of G-protein-coupled receptor signaling complexes by scaffolding proteins. Curr. . 2, 504-514
  19. Kurakin, A., Swistowski, A., Wu, S.C., and Bredesen, D.E. (2007). The PDZ domain as a complex adaptive system. PLoS ONE 2, e953 https://doi.org/10.1371/journal.pone.0000953
  20. Mathivanan, S., Periaswamy, B., Gandhi, T.K., Kandasamy, K., Suresh, S., Mohmood, R., Ramachandra, Y.L., and Pandey, A. (2006). An evaluation of human protein-protein interaction data in the public domain. BMC Bioinformatics 7, S19
  21. Nourry, C., Grant, S.G., and Borg, J.P. (2003). PDZ domain proteins: Plug and play!. Sci. STK. 179, RE7
  22. Reina, J., Lacroix, E., Hobson, S.D., Fernandez-Ballester, G., Rybin, V., Schwab, M.S., Serrano, L., and Gonzalez, C. (2002). Computer- aided design of a PDZ domain to recognize new target sequences. Nat. Struct. Biol. 9, 621-627
  23. Skelton, N.J., Koehler, M.F., Zobel, K., Wong, W.L., Yeh, S., Pisabarro, M.T., Yin, J.P., Lasky, L.A., and Sidhu, S.S. (2003). Origins of PDZ domain ligand specificity. J. Biol. Chem. 278, 7645-7654 https://doi.org/10.1074/jbc.M209751200
  24. Songyang, Z., Fanning, A.S., Fu, C., Xu, J., Marfatia, S.M., Chishti, A.H., Crompton, A., Chan, A.C., Anderson, J.M., and Cantley, L.C. (1997). Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275, 73-77 https://doi.org/10.1126/science.275.5296.73
  25. Stiffler, M.A., Chen, J.R., Grantcharova, V.P., Lei, Y., Fuchs, D., Allen, J.E., Zaslavskaia, L.A., and MacBeath, G. (2007). PDZ domain binding selectivity is optimized across the mouse proteome. Science 317, 364-369 https://doi.org/10.1126/science.1144592
  26. Vaccaro, P., and Dente, L. (2002). PDZ domains: troubles in classification. FEBS Lett. 512, 345-349 https://doi.org/10.1016/S0014-5793(02)02220-2
  27. van Ham, M., and Hendriks, W. (2003). PDZ domains-glue and guide. Mol. Biol. Rep. 30, 69-82 https://doi.org/10.1023/A:1023941703493
  28. Wiedemann, U., Boisguerin, P., Leben, R., Leitner, D., Krause, G., Moelling, K., Volkmer-Engert, R., and Oschkinat, H. (2004). Quantification of PDZ domain specificity, prediction of ligand affinity and rational design of super-binding peptides. J. Mol. Biol. 343, 703-718 https://doi.org/10.1016/j.jmb.2004.08.064
  29. Zhang, L., Shao, C., Zheng, D., and Gao, Y. (2006). An integrated machine learning system to computationally screen protein databases for protein binding peptide ligands. Mol. Cell. Proteomics 5, 1224-1232 https://doi.org/10.1074/mcp.M500346-MCP200

Cited by

  1. Interaction prediction and classification of PDZ domains vol.11, pp.None, 2009, https://doi.org/10.1186/1471-2105-11-357
  2. Proteome scanning to predict PDZ domain interactions using support vector machines vol.11, pp.None, 2010, https://doi.org/10.1186/1471-2105-11-507
  3. DNA Barcode-Based Molecular Identification System for Fish Species vol.30, pp.6, 2009, https://doi.org/10.1007/s10059-010-0148-2
  4. Domain-mediated protein interaction prediction: From genome to network vol.586, pp.17, 2009, https://doi.org/10.1016/j.febslet.2012.04.027
  5. Reduced False Positives in PDZ Binding Prediction Using Sequence and Structural Descriptors vol.9, pp.5, 2009, https://doi.org/10.1109/tcbb.2012.54
  6. Predicting PDZ domain mediated protein interactions from structure vol.14, pp.None, 2013, https://doi.org/10.1186/1471-2105-14-27