• Title/Summary/Keyword: Fuzzy-logic

Search Result 2,947, Processing Time 0.036 seconds

A Design of FHIDS(Fuzzy logic based Hybrid Intrusion Detection System) using Naive Bayesian and Data Mining (나이브 베이지안과 데이터 마이닝을 이용한 FHIDS(Fuzzy Logic based Hybrid Intrusion Detection System) 설계)

  • Lee, Byung-Kwan;Jeong, Eun-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.158-163
    • /
    • 2012
  • This paper proposes an FHIDS(Fuzzy logic based Hybrid Intrusion Detection System) design that detects anomaly and misuse attacks by using a Naive Bayesian algorithm, Data Mining, and Fuzzy Logic. The NB-AAD(Naive Bayesian based Anomaly Attack Detection) technique using a Naive Bayesian algorithm within the FHIDS detects anomaly attacks. The DM-MAD(Data Mining based Misuse Attack Detection) technique using Data Mining within it analyzes the correlation rules among packets and detects new attacks or transformed attacks by generating the new rule-based patterns or by extracting the transformed rule-based patterns. The FLD(Fuzzy Logic based Decision) technique within it judges the attacks by using the result of the NB-AAD and DM-MAD. Therefore, the FHIDS is the hybrid attack detection system that improves a transformed attack detection ratio, and reduces False Positive ratio by making it possible to detect anomaly and misuse attacks.

DESIGN AND DEVELOPMENT OF AN OPTIMAL INTELLIGENT FUZZY LOGIC CONTROLLER FOR LASER TRACKING SYSTEM

  • Lu, Jia;Cannady, James
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2258-2263
    • /
    • 2003
  • This paper presents the design and development of an optimal fuzzy logic controller (FLC) for a laser tracking system. An optimal intelligent fuzzy logic controller was founded on integral criterion of the fuzzy models and three-dimensional fuzzy control. Research had been also concentrated on the methods for multivariable fuzzy models for the purposes of real-time process. Simulation results have shown remarkable tracking performance of this fuzzy PID controller.

  • PDF

Enhancement of Computational Efficiency for Type-1 Fuzzy Logic Controller Using Rule Selection Method (Rule 선택 기법을 사용한 Type-1 Fuzzy Logic Controller의 연산 효율성 향상)

  • Joh, Jung-Woo;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1879_1880
    • /
    • 2009
  • 본 논문에서는 제어상황에 따라 Type-1 Fuzzy Logic Controller가 선택적으로 rule을 사용하도록 rule 선택 알고리즘을 제안 한다. 그리고 이를 통해 연산 효율성을 높이는 방법에 관해 논한다. Type-1 Fuzzy Logic Controller는 기존의 제어기에 비해 설계하기 쉽고 성능이 더 뛰어나다. 그러나 제어 변수가 많아질수록 rule의 개수가 늘어나 연산량이 증가하게 된다. 연산량이 많아지면 고성능의 컴퓨터에서는 실시간 연산에 문제가 없으나 산업용 micro controller에서는 실시간 연산을 구현하는데 한계가 발생한다. 본 논문에서는 Type-1 Fuzzy Logic System의 논리구조에 근거하여 Type-1 Fuzzy Logic Controller의 연산량을 감소시킬 수 있는 알고리즘을 제안한다. 제안한 알고리즘은 제어상황에 따라 필요한 rule들만 선택적으로 제어값 도출을 위한 연산에 관여하도록 한다. Matlab 시뮬레이션을 통해 제안한 알고리즘의 유용성과 연산량을 실험하였다. 실험대상은 2륜 이동로봇으로 하였고 step 응답과 전/후진 시 결과를 관찰하였다. 실험 결과 제안한 알고리즘이 기존의 Type-1 Fuzzy Logic Controller에 비해 제어상황에 따라 필요한 rule들만 선택적으로 사용하는 것을 확인하였다. 결과적으로 연산 효율성이 향상되었다.

  • PDF

Simultaneous precision positioning and vibration suppression of reciprocating flexible manipulators

  • Ma, Kougen;Ghasemi-Nejhad, Mehrdad N.
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.13-27
    • /
    • 2005
  • Simultaneous precision positioning and vibration suppression of a reciprocating flexible manipulator is investigated in this paper. The flexible manipulator is driven by a multifunctional active strut with fuzzy logic controllers. The multifunctional active strut is a combination of a motor assembly and a piezoelectric stack actuator to simultaneously provide precision positioning and wide frequency bandwidth vibration suppression capabilities. First, the multifunctional active strut and the flexible manipulator are introduced, and their dynamic models are derived. A control strategy is then proposed, which includes a position controller and a vibration controller to achieve simultaneous precision positioning and vibration suppression of the flexible manipulator. Next, fuzzy logic control approach is presented to design a fuzzy logic position controller and a fuzzy logic vibration controller. Finally, experiments are conducted for the fuzzy logic controllers and the experimental results are compared with those from a PID control scheme consisting of a PID position controller and a PID vibration control. The comparison indicates that the fuzzy logic controller can easily handle the non-linearity in the strut and provide higher position accuracy and better vibration reduction with less control power consumption.

A Study of Construct Fuzzy Inference Network using Neural Logic Network

  • Lee, Jae-Deuk;Jeong, Hye-Jin;Kim, Hee-Suk;Lee, Malrey
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.7-12
    • /
    • 2005
  • This paper deals with the fuzzy modeling for the complex and uncertain nonlinear systems, in which conventional and mathematical models may fail to give satisfactory results. Finally, we provide numerical examples to evaluate the feasibility and generality of the proposed method in this paper. The expert system which introduces fuzzy logic in order to process uncertainties is called fuzzy expert system. The fuzzy expert system, however, has a potential problem which may lead to inappropriate results due to the ignorance of some information by applying fuzzy logic in reasoning process in addition to the knowledge acquisition problem. In order to overcome these problems, We construct fuzzy inference network by extending the concept of reasoning network in this paper. In the fuzzy inference network, the propositions which form fuzzy rules are represented by nodes. And these nodes have the truth values representing the belief values of each proposition. The logical operators between propositions of rules are represented by links. And the traditional propagation rule is modified.

A New Approach to Adaptive Damping Control for Statistic VAR Compensators Based on Fuzzy Logic

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.825-829
    • /
    • 2005
  • This paper presents an approach for designing a fuzzy logic-based adaptive SVC damping In controller for damping low frequency power oscillations. Power systems are often subject to low Frequency electro-mechanical oscillations resulting from electrical disturbances. Generally, power system stabilizers are designed to provide damping against this kind of oscillations. Another means to achieve damping is to design supplementary damping controllers that are equipped with SVC. Various approaches are available for designing such controllers, many of which are based on the concepts of damping torque and others which treat the damping controller design as a generic control problem and apply various control theories on it. In our proposed approach, linear optimal controllers are designed and then a fuzzy logic tuning mechanism is constructed to generate a single control signal. The controller uses the system operating condition and a fuzzy logic signal tuner to blend the control signals generated by two linear controllers, which are designed using an optimal control method. First, we design damping controllers for the two extreme conditions; the control action for intermediate conditions is determined by the fuzzy logic tuner. The more the operating condition belongs to one of the two fuzzy sets, the stronger the contribution of the control signal from that set in the output signal. Simulation studies done on a one-machine infinite-bus and a four-machine two-area test system, show that the proposed fuzzy adaptive damping SVC controller effectively enhances the damping of low frequency oscillations.

  • PDF

VLSI Implemtntations of Fuzzy Logic

  • Grantner, Janos;Patyra, Marek J.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.781-784
    • /
    • 1993
  • Most linguistic models of processes or plants known are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show two models for synchronous finite state machines (FSM) based on fuzzy logic, namely the Crisp-State-Fuzzy-Output (CSFO FSM) and Fuzzy-State-Fuzzy Output (FSFO FSM). As a result of the introduction of the FSM models, the improved architectures for fuzzy logic controller have been defined. These architectures featuring pipelined intelligent fuzzy controller are discussed in terms of dimensionality of the model. VLSI integrated circuit implementation issues of the fuzzy logic controller are also considered. The presented approach can be utilized for fuzzy controller hardware accelerators intended to work in the real-time environment.

  • PDF

Backward Control Simulation of Tractor-Trailer Using Fuzzy Logic and Genetic Algorithms (퍼지논리와 유전알고리즘을 이용한 트랙터-트레일러의 후진제어 시뮬레이션)

  • 조성인;기노훈
    • Journal of Biosystems Engineering
    • /
    • v.20 no.1
    • /
    • pp.87-94
    • /
    • 1995
  • When farmer loads and unloads farm products with a trailer, linked to a tractor, the tractor-trailer is backed up to the loading duck. However, travelling backward is not easy and takes a time for even skilled operators. Therefore, unmanned backing up is necessary to save the effort. A backward controller of tractor-trailer was simulated using fuzzy logic and genetic algorithms. Operators drive the tractor-trailer back and forth several times for backing up to the loading duck. As the operators did it, a backward controller was designed using fuzzy logic. And genetic algorithms was applied to improve the performance of the backward controller. With the strings coded with the fuzzy membership functions, genetic operations were carried out. After 30 generations, the best fitted fuzzy membership functions were found. Those membership functions were used in the fuzzy backward controller. The fuzzy controller combined with genetic algorithms showed the better results than the fuzzy controller did alone.

  • PDF

Development of Intelligently Unmanned Combine Using Fuzzy Logic Control -(Graphic Simulation)-

  • N.H.Ki;Cho, S.I.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1264-1272
    • /
    • 1993
  • The software for unmanned control of three row typed rice combine has been developed using fuzzy logic. Three fuzzy variables were used : operating status of combine, steering, and speed. Eleven fuzzy rules were constructed and the eleven linguistic variables were used for the fuzzy rules. Six sensors were use of to get input values and sensor input values were quantified into 11 levels. The fuzzy output was infered with fuzzy inferrence which uses the correlation product encoding , and it must have been defuzzified by the method of center of gravity to use it for the control. The result of performance test using graphic simulation showed that the intelligently unmanned control of a rice combine was possible using fuzzy logic control.

  • PDF

A method of converting fuzzy system into 2 layered hierarchical fuzzy system (퍼지 시스템의 2계층 퍼지 시스템으로의 변환 방법)

  • Joo Moon-G.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.303-308
    • /
    • 2006
  • To solve the rule explosion problem in multi input fuzzy logic system, a method of converting a given fuzzy system to 2 layered hierarchical fuzzy system is presented where the collection of the THEN-parts of the fuzzy rules of given fuzzy system is considered as vectors of fuzzy rule. At the 1 st layer, linearly independent fuzzy rule vectors generated from the given fuzzy logic system are used and, at the 2nd layer, linear combinations of these independent fuzzy rule vectors are used for fuzzy logic units at each layer. The resultant 2 layered hierarchical fuzzy system has not only equivalent approximation capability, but less number of fuzzy rules compared with the conventional fuzzy logic system.