• Title/Summary/Keyword: Fuzzy-Entropy

Search Result 118, Processing Time 0.024 seconds

An Algorithmic approach for Fuzzy Logic Application to Decision-Making Problems (결정 문제에 대한 퍼지 논리 적용의 알고리즘적 접근)

  • 김창종
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.3-15
    • /
    • 1997
  • In order to apply fuzzy logic, two major tasks need to be performed: the derivation of fuzzy rules and the determination of membership functions. These tasks are often difficult and time-consuming. This paper presents an algorithmic method for generating membership functions and fuzzy rules applicable to decision-making problems; the method includes an entropy minimization for clustering analog samples. Membership functions are derived by partitioning the variables into desired number of fuzzy terms, and fuzzy rules are obtained using minimum entropy clustering. In the mle derivation process, rule weights are also calculated. Inference and defuzzification for classification problems are also discussed.

  • PDF

Fuzzy Neural System Modeling using Fuzzy Entropy (퍼지 엔트로피를 이용한 퍼지 뉴럴 시스템 모델링)

  • 박인규
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.2
    • /
    • pp.201-208
    • /
    • 2000
  • In this paper We describe an algorithm which is devised for 4he partition o# the input space and the generation of fuzzy rules by the fuzzy entropy and tested with the time series prediction problem using Mackey-Glass chaotic time series. This method divides the input space into several fuzzy regions and assigns a degree of each of the generated rules for the partitioned subspaces from the given data using the Shannon function and fuzzy entropy function generating the optimal knowledge base without the irrelevant rules. In this scheme the basic idea of the fuzzy neural network is to realize the fuzzy rules base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by the steepest descent algorithm. The Proposed algorithm has been naturally derived by means of the synergistic combination of the approximative approach and the descriptive approach. Each output of the rule's consequences has expressed with its connection weights in order to minimize the system parameters and reduce its complexities.

  • PDF

HANDLING MISSING VALUES IN FUZZY c-MEANS

  • Miyamoto, Sadaaki;Takata, Osamu;Unayahara, Kazutaka
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.139-142
    • /
    • 1998
  • Missing values in data for fuzzy c-menas clustering is discussed. Two basic methods of fuzzy c-means, i.e., the standard fuzzy c-means and the entropy method are considered and three options of handling missing values are proposed, among which one is to define a new distance between data with missing values, second is to alter a weight in the new distance, and the third is to fill the missing values by an appropriate numbers. Experimental Results are shown.

  • PDF

A Note on Fuzzy Linear Regression Analysis of Fuzzy Valued Variables

  • Hong, Dug-Hun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.1
    • /
    • pp.99-101
    • /
    • 2001
  • In this note, we show that a linear regression model, using entropy and degree of nearness of fuzzy numbers, suggested by Wang and Li[FSS 36, 125-136] seems to be unreasonable by an example.

  • PDF

Fuzzy Quantization and Rate Control for Very Low Bit­rate Video Coder (초저전송율 동영상 부호기를 위한 퍼지 양자화 및 율 제어에 관한 연구)

  • 양근호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1684-1690
    • /
    • 2003
  • In this paper, we proposed a fuzzy controller for the evaluation of the quantization Parameters in the H.263 coder to optimize the subjective quality of each coded frame, keeping the transmission rate constant. We adopted the Mamdani method for fuzzification and the centroid method for defuzzification. The energy and entropy are correlated to features of the HVS in spatial domain, while motion vectors are used to estimate the temporal characteristics of the signal. And then, the fuzzy inputs adapted the variance and the entropy in spatial domain, and the motion vector in temporal domain. We induced the fuzzy membership function and decided the fuzzy relevance to be compatible in visual characteristics. And then, we designed FAM banks. The fuzzy technology has been applied to a practical video compression. This results is obtained an effective rate control technique, an optimum bit allocation and a high subjective quality using fuzzy quantization.

Multi-level thresholding using Entropy-based Weighted FCM Algorithm in Color Image (Entropy 기반의 Weighted FCM 알고리즘을 이용한 컬러 영상 Multi-level thresholding)

  • Oh, Jun-Taek;Kwak, Hyun-Wook;Kim, Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.73-82
    • /
    • 2005
  • This paper proposes a multi-level thresholding method using weighted FCM(Fuzzy C-Means) algorithm in color image. FCM algerian determines a more optimal thresholding value than the existing methods and can extend to multi-level thresholding. But FCM algerian is sensitive to noise because it doesn't include spatial information. To solve the problem, we can remove noise by applying a weight based on entropy that is obtained from neighboring pixels to FCM algerian. And we determine the optimal cluster number by using within-class distance in code image based on the clustered pixels of each color component. In the experiments, we show that the proposed method is more tolerant to noise and is more superior than the existing methods.

Automatic Threshold Selection and Contrast Intensification Technique for Image Enhancement (영상 향상을 위한 자동 임계점 선택 및 대비 강화 기법)

  • Lee, Geum-Boon;Cho, Beom-Joon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.462-470
    • /
    • 2008
  • This study applies fuzzy functions to improve image quality under the assumption that uncertainty of image information due to low contrast is based on vagueness and ambiguity of the brightness pixel values. To solve the problem of low contrast images whose brightness distribution is inclined, we use the k-means algorithm as a parameter of the fuzzy function, through which automatic critical points can be found to differentiate objects from background and contrast between bright and dark points can be improved. The fuzzy function is presented at the three main stages presented to improve image quality: fuzzification, contrast enhancement and defuzzification. To measure improved image quality, we present the fuzzy index and entropy index and in comparison with those of histogram equalization technique, it shows outstanding performance.

  • PDF

A Note on Maximal Entropy OWA Operator Weights

  • Hong, Dug-Hun;Kim, Kyung-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.537-541
    • /
    • 2006
  • In this note, we give an elementary simple proof of the main result of $Full{\acute{e}}rand$ Majlender [Fuzzy Sets and systems 124(2001) 53-57] concerning obtaining maximal entropy OWA operator weights.

  • PDF

A NOTE ON THE MAXIMUM ENTROPY WEIGHTING FUNCTION PROBLEM

  • Hong, Dug-Hun;Kim, Kyung-Tae
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.547-552
    • /
    • 2007
  • In this note, we extends some of the results of Liu [Fuzzy Sets and systems 157 (2006) 869-878]. This extension consists of a simple proof involving weighted functions and their preference index. We also give an elementary simple proof of the maximum entropy weighting function problem with a given preference index value without using any advanced theory like variational principles or without using Lagrangian multiplier methods.

Copula entropy and information diffusion theory-based new prediction method for high dam monitoring

  • Zheng, Dongjian;Li, Xiaoqi;Yang, Meng;Su, Huaizhi;Gu, Chongshi
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.143-153
    • /
    • 2018
  • Correlation among different factors must be considered for selection of influencing factors in safety monitoring of high dam including positive correlation of variables. Therefore, a new factor selection method was constructed based on Copula entropy and mutual information theory, which was deduced and optimized. Considering the small sample size in high dam monitoring and distribution of daily monitoring samples, a computing method that avoids causality of structure as much as possible is needed. The two-dimensional normal information diffusion and fuzzy reasoning of pattern recognition field are based on the weight theory, which avoids complicated causes of the studying structure. Hence, it is used to dam safety monitoring field and simplified, which increases sample information appropriately. Next, a complete system integrating high dam monitoring and uncertainty prediction method was established by combining Copula entropy theory and information diffusion theory. Finally, the proposed method was applied in seepage monitoring of Nuozhadu clay core-wall rockfill dam. Its selection of influencing factors and processing of sample data were compared with different models. Results demonstrated that the proposed method increases the prediction accuracy to some extent.