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Abstract

Missing values in data for fuzzy c-means clustering is discussed. Two basic methods of fuzzy c-means,
i.e., the standard fuzzy c-means and the entropy method are considered and three options of handling
missing values are proposed, among which one is to define a new distance between data with missing
values, second is to alter a weight in the new distance, and the third is to fill in the missing values by an
appropriate numbers. Experimental results are shown.
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1 Introduction

Missing values have frequently been encountered
in data analysis including clustering of data in
real applications. In agglomerative clustering,
dissimilarity measures including missing values
have been considered [1]. Moreover, Jain and
Dubes [5] mention general approaches of handling
mussing values in crisp cluster analysis. Since they
refer to definition of distances between data units
in the presence of missing values, their methods
primarily concern hierarchical clustering.

On the other hand, recent development and
applications of fuzzy clustering, which especially
concentrate on fuzzy c-means, show significance
of this class of techniques.

These observations lead us to the study of miss-
ing values in fuzzy clustering, and hence the aim
of the present paper is to show how to han-
dle missing values in methods of fuzzy c-means
clustering. Two fundamentally different meth-
ods of fuzzy c-means, i.e., the standard method
by Dunn [3, 4] and Bezdek [2] and the entropy
method [6, 7] are considered. In addition, three
techniques of handling missing data are studied.

Clustering algorithms are developed for these
different combinations of methods and a numeri-
cal example is given.

2 Two methods of fuzzy c-
means

Two methods here mean the standard fuzzy c-
means [2] and the entropy method (e.g., see {7}).
Let us briefly review these methods.

2.1 Standard fuzzy c-means

Let X = {zy,..., 2, } be set of objects to be clus-
tered. Each z; = (z},...,z) is a point in p dimen-
sional Euclidean space. Objective function to be
minimized is denoted by J and in the standard
method we put

J = Jn(U,v) = ZZ(us‘k)mdzk, m>1
i=1k=1

where U = (u;) is membership matrix with the
constraint

M = {(uik)lzuik = 1,u; € (0,1],
i=1

k=1,..,n}
and
— 2
die = ||lze — villz
where || - || is the Euclidean norm, and moreover
v=(v1,..., %),
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namely, v is the abbreviation of all cluster centers.

The following general algorithm of alterna-
tive optimization is common to the two methods
herein.

Fuzzy c-means algorithm:
CM1. Set initial values for U and v.

CM2. Minimize J(U,v) with respect to U € M
while the previous v is regarded as a fixed
parameter.

CM3. Minimize J(U,v) with respect to v while
the previous U is regarded as a fixed param-
eter.

CM4. Check the stopping criterion (the descrip-
tion of the condition is omitted here for sim-
plicity). If the criterion is not satisfied, go to
CM2.

As is well-known the optimal solution in CM2 is
N odig 1,
Uk = [Z(T)"‘"] (1)
i=1 ik
and the optimal v in CM3 is

n
3 (uie) ™2
k=1

— (2)
> (wa)™
k=1

Uy =

2.2 Entropy method

There are different approaches to the method
of entropy [6, 7]. Here we adopt the regu-
larization approach proposed by Miyamoto and
Mukaidono [7], since it uses the alternative opti-
mization algorithm CM and therefore easier to
describe.

The entropy method uses the objective func-
tion

J = JU,v)
< n n [
= ZZU,‘kd,‘k + A Zzuik loguik
i=1 k=1 k=1i=1

with the same distance and the same constraint
M. The parameter A is compared to the reg-
ularizing parameter in 1ll-posed problems and
hence this method is called regularization by en-
tropy [7].

The second term of the entropy function is for
fuzzification, while the same role is played by the
parameter m in the standard method.

Thus the algorithm CM with

J(U,v) = JXU,v)
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is used in the entropy method.
The optimal solutions in CM2 is given by

E—Ad.k
Uiy = —7——— (3)
Z e—/\d,'k
i=1

and that in CM3 is

n
E Uik Tk
k=1

vi= T
E Uik
k=1

Theoretical properties of the two methods are
compared using fuzzy classification functions in
which z; are replaced by the variable z in (1)

and (3) [8].

(4)

3 Handling missing values

Without loss of generality, assume for the mo-
ment that the first component of £; is missing:

zy = (x, 2% . 2h).

Obviously, the distance ||z; — v;]|? cannot be cal-
culated. There are two major approaches of deal-
ing with missing data. First, objects with missing
values are simply deleted and the rest is consid-
ered for the clustering. Second approach is to
define the distance d;; between z, and v; in more
or less heuristic manner.

Since the first way is uninteresting, the second
approach alone is studied here, in which three
different definitions of d;; are introduced:

1. Simply ignore the missing value and calcu-
late the distance from the resulting coordi-
nate:

p
diy =Y (2% —v)%. (5)

£=2

2. Ignore the missing coordinate and multiply
p/(p—1):

»
diy = —— 37 (e — b2, (6)

(If ¢ coordinates are missing, multiply p/(p—
9)-)

- 3. Replace *, the missing value, by the weighted

average:
.
> (uin)™v}
z} = S (7)
> (uwi)™
i=1



(In the entropy method, put m = 1.)

It is easy to see that dijx’s by (5) and (6) lead to
the same solutions, since the multiplier p/(p—1) is
cancelled out in (1) and (3). We therefore should
consider only two methods of (5) and (7) in the
present class of fuzzy c-means. (It cannot gener-
ally be proved that (5) and (6) lead to the same
solution in variations of the fuzzy c-means, and
hence they should be considered to be different
methods of handling missing values.)

4 A numerical example

Figure 1 shows a set of points scattered on a
plane. Sorne points have missing valuesin the ver-
tical coordinates, and they are shown on the hor-
1zontal axis, as if their vertical coordinates were
zero. The result of clustering by fuzzy c-means is
shown in Fig.2, which is obtained from the cut of
a =0.5.

Figures 3 and 4 show the projections of the
points onto the horizontal axis, with the vertical
coordinate of the membership values. The dissim-
ilarity by (5) is used in the upper figure while (7)
1s used in the lower. The standard fuzzy c-means
(i.e., (1) and (2) ) is used. Those points with-
out the missing value are shown by dots while
the points with the missing value are shown by
circles. The circles are interpolated by the curves
to emphasize them.

Figures 5 and 6 show the projections of the
points in the same way, except that the entropy
method is used. The upper uses (5) and the lower
uses (7).

5 Conclusion

Data with missing values have been considered
and two methods of fuzzy c-means have been ap-
plied. Three options of handling missing values
have been proposed, but two of which are iden-
tical. Still another method of fuzzy c-means is
being developed [9], for which the three options
are all different.

The method of handling missing values can be
generalized to data with uncertainties of more
general forra, which is under development.

Moreover, real data with missing values should
be analyzed which is a main subject in future
studies.
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Figure 1: A set of points scatterd on a plane.
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Figure 2: Result by fuzzy c-means

with the cut of o = 0.5.
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Figure 3: Standard fuzzy c-means by option 1
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Figure 4: Standard fuzzy c-means by option 3.

Figure 5: Entropy method by option 1.
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Figure 6: Entropy method by option 3.
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