• Title/Summary/Keyword: Fuzzy control technique

Search Result 522, Processing Time 0.024 seconds

A Fuzzy Current Controller using General Purposed Fuzzy Control Software Tool (범용 퍼지 지원 도구를 이용한 퍼지 전류제어기)

  • Min, Seong-Sik;Lee, Kyu-Chan;Song, Jhong-Whan;Cho, Kyu-Bok
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.341-344
    • /
    • 1991
  • Current controlled pulse width modulation(PWM) for voltage source inverter(VSI) is one of the control method which controls the current directly so that we can perform vector control because it reduces the orders of differential equations of the induction machine. This paper propose a Fuzzy current controlled PWM which properly minimize a current ripple using Fuzzy theory in a constant switching frequency. This technique is applied to an electrical drive system with an induction machine(IM) by simulation. By comparison with the known classical method such as ramp comparison, hysteresis band method, our contribution shows the better performances.

  • PDF

Sensorless Fuzzy MPPT Control for a Small-scale Wind Power Generation System with a Switched-mode Rectifier (SMR 회로를 이용한 소형풍력발전 시스템의 센서리스 퍼지 MPPT제어)

  • Lee, Joon-Min;Park, Min-Gi;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.916-923
    • /
    • 2014
  • This paper proposes a low-cost switched-mode rectifier (SMR) for a small-scale wind turbine with a permanent magnet synchronous generator (PMSG) system. Also, a sensorless Fuzzy MPPT control is realized by the proposed system. In the PMSG system with the SMR, the synchronous impedance can be replaced as the input inductor of a boost converter. Moreover, the sensorless MPPT control using the Fuzzy technique is carried out by the duty-ratio regulation of the SMR. The relation between the generating power and the duty-ratio is ruled by the chain rule. The wind turbine model is implemented by the squirrel cage induction motor and generated the variable torque when the generator speed is varied. To verify the performance of the proposed system, simulation and experimental results are executed.

로봇 머니퓰레이터의 정상상태 위치오차를 제거할 수 있는 퍼지제어 알고리듬

  • 강철구;곽희성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.235-240
    • /
    • 1995
  • In order to eliminate position errors existing at the steady state in the motion control of robotic manipulators, a new fuzzy control algorithm is proposed using three variables, position error, velocity error and integral of position errors as input variables of the fuzzy controller. Three dimensional look-up table is used toreduce the computational time in real-time control, and a technique reducing the amount of necessary memory is introduced. Simulation and experimental studies show that the position errors at the steady state are decreased more than 90% compared to those of existing fuzzy controller when the proposed fuzzy controller is applied to the 2 axis direct drive SCARA robot manipulator.

  • PDF

Fuzzy Controller Design for Kite Flight Control (풍력발전용 연의 비행제어를 위한 퍼지 제어기 설계)

  • Cho, Dong-Hyun;Kim, Jong Chul
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.137-143
    • /
    • 2013
  • In recent years, the interest in a various energy sources is increasing. Among these energies, there are many kinds of researches for the kite which can generate the energy from high-altitude wind power. There are many attempts to apply the kite to the wind power generation and ship salvage, and it must require the flight control of the kite for this applications. In this paper, we suggest this flight controller based on the flight technique of sport kite. For this controller based on the human controller, we design the simple fuzzy controller with simple fuzzy rules.

FUZZY CONTROL OF THREE LINKS A ROBOTIC MANIPULATOR

  • Kumbla, Kishan;Jamshidi, Mo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1410-1413
    • /
    • 1993
  • This paper presents the application of fuzzy control to three links of a Rhino robot and compares its performance to traditional PD control. The dynamics of motion of robot links are governed by nonlinear differential equations. The fuzzy controller, being an adaptive technique, gives better performance than the traditional linear PD controller over a typical operational range. The fuzzy controller reaches the desired position with no overshoot, which is unlikely with the PD controller.

  • PDF

On Generating Fuzzy Systems based on Pareto Multi-objective Cooperative Coevolutionary Algorithm

  • Xing, Zong-Yi;Zhang, Yong;Hou, Yuan-Long;Jia, Li-Min
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.444-455
    • /
    • 2007
  • An approach to construct multiple interpretable and precise fuzzy systems based on the Pareto Multi-objective Cooperative Coevolutionary Algorithm (PMOCCA) is proposed in this paper. First, a modified fuzzy clustering algorithm is used to construct antecedents of fuzzy system, and consequents are identified separately to reduce computational burden. Then, the PMOCCA and the interpretability-driven simplification techniques are executed to optimize the initial fuzzy system with three objectives: the precision performance, the number of fuzzy rules and the number of fuzzy sets; thus both the precision and the interpretability of the fuzzy systems are improved. In order to select the best individuals from each species, we generalize the NSGA-II algorithm from one species to multi-species, and propose a new non-dominated sorting technique and collaboration mechanism for cooperative coevolutionary algorithm. Finally, the proposed approach is applied to two benchmark problems, and the results show its validity.

Trabecular bone Thickness Measurement of Rat Femurs using Zoom-in Micro-tomography and 3D Fuzzy Distance Transform (Zoom-in Micro-tomography와 3차원 Fuzzy Distance Transform을 이용한 쥐 대퇴부의 해면골 두께 측정)

  • Park, Jeong-Jin;Cho, Min-Hyoung;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.4
    • /
    • pp.189-196
    • /
    • 2006
  • Micro computed tomography (micro-CT) has been used for in vivo animal study owing to its noninvasive and high spatial resolution capability. However, the sizes of existing detectors for micro-CT systems are too small to obtain whole-body images of a small animal object with $\sim$10 micron resolution and a part of its bones or other organs should be extracted. So, we have introduced the zoom-in micro-tomography technique which can obtain high-resolution images of a local region of an live animal object without extracting samples. In order to verify our zoom-in technique, we performed in vivo animal bone study. We prepared some SD (Sprague-Dawley) rats for making osteoporosis models. They were divided into control and ovariectomized groups. Again, the ovariectomized group is divided into two groups fed with normal food and with calcium-free food. And we took 3D tomographic images of their femurs with 20 micron resolution using our zoom-in tomography technique and observed the bone changes for 12 weeks. We selected ROI (region of interest) of a femur image and applied 2D FDT (fuzzy distance transform) to measure the trabecular bone thickness. The measured results showed obvious bone changes and big differences between control and ovariectomized groups. However, we found that the reliability of the measurement depended on the selection of ROI in a bone image for thickness calculation. So, we extended the method to 3D FDT technique. We selected 3D VOI (volume of interest) in the obtained 3D tomographic images and applied 3D FDT algorithm. The results showed that the 3D technique could give more accurate and reliable measurement.

Stabilization Control of the Inverted Pendulum System by Hierarchical Fuzzy Inference Technique (계층적 퍼지추론기법에 의한 도립진자 시스템의 안정화 제어)

  • Lee, Joon-Tark;Chong, Hyeng-Hwan;Kim, Tae-Woo;Choi, Woo-Jin;Park, Chong-Hun;Kim, Hyeng-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1104-1106
    • /
    • 1996
  • In this paper, a hierarchical fuzzy controller is proposed for the stabilization control of the inverted pendulum system. The design of controller for that system is difficult because of its complicated nonlinear mathematical model with unknown parameters. Conventional fuzzy control strategy based only on dynamics of pendulum made have failed to stabilize. However, proposed control strategies are to swing pendulum from natural stable up equilibrium point to an unstable equilibrium point and are to transport a cart from an arbitrary position toward a center of rail. Thus, the proposed fuzzy stabilization controller have a hierarchical fuzzy inference structure; that is, the lower level is for inference interface for the virtual equilibrium point and the higher level one for the position control of cart according to the firstly inferred virtual equilibrium point.

  • PDF

A Decentralized Control Technique for Experimental Nonlinear Helicopter Systems (헬리콥터 시스템의 퍼지 분산 제어기 설계)

  • Kim, Moon-Hwan;Park, Jin-Bae;Lee, Ho-Jae;Cha, Dae-Bum;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.80-84
    • /
    • 2002
  • This paper proposes a decentralized control technique for 2-dimensional experimental helicopter systems. The decentralized control technique is especially suitable in large-scale control systems. We derive the stabilization condition for the interconnected Takagi-Sugeno (TS) fuzzy system using the rigorous tool-Lyapunov stability criterion and formulate the controller design condition in terms of linear matrix inequality (LMI). To demonstrate the feasibility of the proposed method, we include the experiment result as well as a computer simulation one, which strongly convinces us the applicability to the industry.

The Smart Management of Applications Using Fuzzy Logic in Wireless Sensor Networks (무선 네트워크 환경에서 퍼지 로직을 이용한 어플리케이션의 지능적 관리 방안 연구)

  • Lim, Jae-Hoon;Lee, Min-Woo;Kim, Min-Ki;Park, Gwi-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.276-278
    • /
    • 2009
  • In this paper, we propose the smart management technique of applications using fuzzy logic in wireless sensor networks. We consider the intelligent action compared to the classical action that can only be controlled by on and off. The vagueness depends on the places of the sensor nodes, human's character and emotion. In order to control them with the smartness, the proposed technique considers the better performance of applications in wireless sensor networks. We performed the simulations and implementations on sensor nodes and checked out our ideas. The simulation results show that the proposed technique is more reasonable than the classical approach.

  • PDF