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On Generating Fuzzy Systems based on Pareto Multi-objective
Cooperative Coevolutionary Algorithm

Zong-Yi Xing, Yong Zhang, Yuan-Ldng Hou, and Li-Min Jia

Abstract: An approach to construct multiple interpretable and precise fuzzy systems based on
the Pareto Multi-objective Cooperative Coevolutionary Algorithm (PMOCCA) is proposed in
this paper. First, a modified fuzzy clustering algorithm is used to construct antecedents of fuzzy
system, and consequents are identified separately to reduce computational burden. Then, the
PMOCCA and the interpretability-driven simplification techniques are executed to optimize the
initial fuzzy system with three objectives: the precision performance, the number of fuzzy rules
and the number of fuzzy sets; thus both the precision and the interpretability of the fuzzy systems
are improved. In order to select the best individuals from each species, we generalize the NSGA-
II algorithm from one species to multi-species, and propose a new non-dominated sorting
technique and collaboration mechanism for cooperative coevolutionary algorithm. Finally, the
proposed approach is applied to two benchmark problems, and the results show its validity.

Keywords: Coevolutionary algorithm, fuzzy modeling, fuzzy system, multi-objectives.

1. INTRODUCTION

Fuzzy systems have been successfully applied to
various areas such as classification, simulation, data
mining, pattern recognition, prediction and control.
When they are constructed traditionally based on
expert knowledge, the obtained fuzzy systems are
usually well understandable, while when they are built
from numerical data, the generated fuzzy systems are
not necessarily interpretable.

In the recent few years, many researches have been
devoted to the study of the tradeoff between
interpretability and precision [1,2,3~13]. Particularly,
evolutionary computation, or genetic algorithm (GA),
has received a lot of attention owing to its robustness
and the ability to obtain global optimum solutions.
GA is used widely to generate fuzzy rules and adjust
the parameters of fuzzy systems [14]. However, when
the simultaneous optimization of the antecedents and
the number of rules and other factors concerning
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fuzzy modeling is needed, it is difficult to achieve a
satisfactory fuzzy system, because the chromosome
represented the complete solution is too long and the
learning performance is deteriorated. The hierarchical
genetic algorithm [4,15] and the cooperative
coevolutionary algorithm [13] are two promising
approaches to solve this problem.

This paper proposes a new Pareto Multi-Objective
Cooperative Coevolutionary Algorithm (PMOCCA)
to construct multiple Pareto-optimal fuzzy systems
from numerical data, considering both interpretability
and precision. First, in order to obtain a good initial
fuzzy system, a modified fuzzy clustering algorithm is
used to identify the antecedents of fuzzy system,
while the consequents are designed separately to
reduce computational burden. Then, the PMOCCA
and interpretability-driven simplification techniques
are used to evolve the initial fuzzy system iteratively
with three objectives: the precision performance, the
number of fuzzy rules and the number of fuzzy sets.
Resultantly, multiple Pareto-optimal fuzzy systems
are obtained. In this step, different from traditional
weighted sum method in which multiple objectives
are combined to one objective and only a single fuzzy
system can be obtained in one run, we propose a novel
non-dominated sorting technique that can find a set of
Pareto-optimal fuzzy systems in a single run based on
NSGA-II. The advantages of the paper are: (1) the
interpretability-driven simplification techniques are
used to simplify the fuzzy sets and fuzzy rules, thus
the interpretability of the fuzzy system is improved. (2)
The number of rules, the antecedents of the fuzzy
rules and the parameters of the antecedents are
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optimized simultaneously by the PMOCCA. (3) A set
of Pareto-optimal solutions can be acquired in a single
run so that the decision-maker can choose the most
appropriate solution. (4) The obtained fuzzy systems
are interpretable and accurate.

This paper is organized as follows. In Section 2, we
review the TS fuzzy system and interpretability issues
in fuzzy system. Section 3 constructs an initial fuzzy
system based on fuzzy clustering algorithm. The
interpretability-driven simplification techniques are
described in Section 4. The complete PMOCCA is
detailed in Section 5. Section 6 provides some
experiments and results before concluding in Section 7.

2. PRELIMINARIES

2.1. TS fuzzy system

The typical fuzzy rule of the Takagi-Sugeno (TS)
Fuzzy model [16] has the form:

R :if xp 18 Ay, xp 1S Ajp .-+, X, 1S 4,
then j>l' =a;x + ain Xy +eee+ a;, Xy, + a0,

where x; is the j-th input variable, A; is the fuzzy set
of the j-th input variable in i-th rule, y;are output of
the i-th fuzzy rule.

The output of the TS fuzzy model is computed
using the normalized fuzzy mean formula:

y(k)=>p;(x)P;,
i=1

where ¢ is the number of rules, and P; is the
normalized firing strength of the ith rule:

n}}:l Ay(x;)
Zi H?:l Aij (xj)

pi(x)=

In this paper, the Gaussian membership function is
used to represent the fuzzy set A;

(x; —vy)?
Ay (x;) = exp(= _1_211_),
20',-1-

where v;and o;; represent the center and the variance

of the Gaussian function respectively.

2.2. Interpretability issues in fuzzy systems
Different from the objective property of precision,
interpretability is a subjective property of fuzzy
systems, which depends on several factors. Although
there is no formal definition for interpretability,
several characteristics are believed to be essential.
These are described as follows [1-8]:
1) The number of variables and rules: a high-
dimensional fuzzy system is difficult to interpret.
The fuzzy system should use as few variables as

possible. A fuzzy system with a large rule base is
less interpretable than a fuzzy system containing
only few rules. Experientially, the number of
fuzzy rules of an interpretable fuzzy system is no
more than ten, which is determined by the limit of
human intelligence.

2) Characteristics of fuzzy rules: each rule should
employ the fewest possible membership functions
(fuzzy sets), i.e., variables. For all fuzzy rules,
they should be consistent with one another. For
any effective input, at least one fuzzy rule should
be fired.

3) Characteristics of membership functions: each
membership function should be convex. The
adjacent membership functions should be
moderately overlapped, and the overlapped value
cannot be too large or small. Generally, 0.5 is a
good choice. Membership functions of any
variable should cover the whole universe. The
number of membership functions should be
compatible with the number of conceptual entities
which a human being can handle.

3. CONSTRUCTON OF AN INITIAL FUZZY
SYSTEM .

In order to guarantee the effective of the PMOCCA,
a good initial fuzzy system is preferred. Fuzzy
clustering algorithm is a well-recognized technique to
identify fuzzy systems. The fuzzy C-Means algorithm
[17] and the Gustafson-Kessel algorithm [18] are the
widely-used methods in fuzzy modeling. However,
there are two main drawbacks to these algorithms.
First, only clusters with approximately equal volumes
can be properly identified, which is frequently
difficult to satisfy in real systems. Second, clusters
obtained are generally axes-oblique rather than axis-
parallel; consequently, a decomposition error is made
in their projection onto the input variables. To
circumvent these problems, the modified Gath-Geva
fuzzy clustering algorithm [19] is applied in this paper.

The objective function based on the minimization
of the sum of weighted squared distances between the
data points and cluster centers is described in the
following:

c N
JZ;UV) =D (uy)" D, (1)
i=l k=1

where Zis the set of data, U=[y;} is the fuzzy

V.1 is the set of
centers of the clusters, ¢ is the number of clusters,
N is the number of data, m is the fuzzy coefficient,
Hj;, is the membership degree between the i-th cluster

partition matrix, V =[}],V5, -,

and k-th data, which satisfies conditions:
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C
Hix €[0,115 Zi:l Hig =1. @

The Lagrange multiplier is used to optimize the
objective function (1). The minimum of (U, V) is
calculated as follows:

1
,ujk = ’ (3)
/ —
2 Dy Dy D
N m
: z
N m
zk=] (:uik)
The variance of the Gaussian function is:
N 2
i (K = v,
ol = Zk—l kA& //f) . (5)

! Z:]:] Hi

The norm of distance between i-th cluster and k-th
data is

N 2
1 :Hn Zkzlﬂik exp(_l(xjk_vij) )
2 =1 2
Dy TN 27r0',-j2- 2 Ojj ©)
~ T A
— i) Ok =)
exp(— k=) 2J/k Ky,
270 20;

1

Given the input variable X, output y and fuzzy
partition matrix U:

T
X] 5y Up 0 0
XT B2 0 u: 0
X = :2 y=|"" U= . iz - . D
Xk YN 0 0 - uy

Appending a unitary column to X gives extended
matrix X, [20]:

X, =[x 1] (®)
then
[aila“'aip’aio]:[XeTUiXe]_lXeTUiy )

is the consequent parameter of the TS fuzzy system.

The procedure of constructing a fuzzy model based
on the modified Gath-Geva fuzzy clustering algorithm
is summarized as follows:

1) Choose the number of fuzzy clusters (fuzzy rules),
the weighting exponent, and the stop criterion
£>0.

2) Generate the matrix U randomly. U must satisfy
the condition (2).

3) Compute the parameters of the model using (4),

(5), (9).
4) Calculate the norm of distance utilizing (6).
5) Update the partition matrix U using (3).

6) Stopif ”U(l) —U(H)H < g, else go to 3).

4. INTERPRETABILITY-DRIVEN
SIMPLIFICATION TECHNIQUES

4.1. Simplification of fuzzy sets

Fuzzy systems obtained by the fuzzy clustering and
the PMOCCA may contain redundant information in
terms of similarity between fuzzy sets (membership
functions). The redundancy makes the fuzzy systems
uninterruptible, for it is difficult to assign meaningful
terms to similar fuzzy sets. In order to acquire an
effective and interpretable fuzzy system, elimination
of redundancy and simplification of the fuzzy system
are necessary.

There are three types of redundant or similar fuzzy
sets in fuzzy system: 1) a fuzzy set is similar to the
universal set, 2) a fuzzy set is similar to the singleton
set, and 3) the fuzzy set 4 is similar to the fuzzy set B.

If a fuzzy set is similar to the universal set or the
singleton set, it should be removed from the
corresponding fuzzy rule antecedent. As for two
similar fuzzy sets, a similarity measure is utilized to
determine if the fuzzy sets should be combined.

For fuzzy sets A and B, a set-theoretic operation
based similarity measure [21] is defined as

le:/:l Lae4(x ) Aag (x3)]

S(4,B) = s
S L) viatp ()]

(10)

where A and v are minimum and maximum
operators respectively. S is a similarity measure in [0,
1]. $=1 means the compared fuzzy sets are equal,
while $=0 indicates that there is no overlap between
the fuzzy sets.

If similarity measure § > 7, i.e., fuzzy sets are very
similar, then the two fuzzy sets 4 and B should be
merged to create a new fuzzy set C, where ¢ is a
predefined threshold. It should be pointed out that
threshold ¢ influences the model performance
significantly. A small threshold leads to a fuzzy model
with low accuracy and highly interpretability. In a
general way, 7 =[0.4-0.7] isa good choice.

For the Gaussian type of fuzzy sets used in this
paper, the parameters of newly merged fuzzy set C
from A and B are defined as

{vc =(vy+vp)/2

(11)
o, =\/cri +0'§ /2.

The process of merging similar fuzzy sets is
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executed iteratively. For each iteration, the similarity
measures between all pairs of adjacent fuzzy sets for
each variable are calculated. The pair of highly similar
fuzzy sets with S>r is merged to create a new
fuzzy set. The rule base of the fuzzy system is updated
by substituting the new fuzzy set for the two highly
similar fuzzy sets. This process continues until there
are no fuzzy sets for which § > 7 . Then the fuzzy sets
that have similarity to the universal set or the
singleton set are removed.

4.2. Simplification of fuzzy rules

During the process of simplification of similar
fuzzy sets and the process of evolutionary operation, it
may generate similar or same fuzzy rules, which need
be reduced to improve interpretability of the fuzzy
system.

Considering the following two fuzzy rules:

R :if xy s gy (%), %2 18 php(x) 55 %, 18 3, (X,)
then y; =
Rjwif o s g (x) %0 18 pjp(X9)y o+, X, 18 ph, (x,,)

then p;=---
then a similarity measure of rules [8] is defined as
SR(Ri,Rj)=minZ:1 S(/uik,,ujk)’ (12)

where S(-) is calculated with the formula (10).
IfS(:) > 4, i.e., the two fuzzy rules are very similar,

then only one fuzzy rule is preserved, while the other
is deleted, where A is a predefined threshold. In a
general way, A=[09-1] is wused. As the

simplification of fuzzy sets, simplification of fuzzy
rules is also carried out iteratively.

5. PARETO MULTI-OBJECTIVE
COOPERATIVE COEVOLUTIONARY
ALGORITHM (PMOCCA)

Coevolutionary  algorithm  refers to  the
simultaneous evolution of two or more species with
coupled fitness. In coevolutionary algorithm, the
fitness of one individual depends on the fitness of
individuals of other species and on its interaction with
them. Coevolutionary algorithm can be classified into
competitive coevolutionary algorithm and cooperative
coevolutionary algorithm. In competitive
coevolutionary algorithm, the species compete with
each other; while in cooperative coevolutionary
algorithm, the species interact with other species to
improve their survival. This paper studies on how to
build interpretable and accurate fuzzy systems using
the Pareto multi-objective cooperative coevolutionary
algorithm (PMOCCA).

There are five issues in the PMOCCA which are
elaborated in this section: (1) problem decomposition;
(2) collaboration formation of multi-species; (3)
multi-objective function of the PMOCCA; (4) non-
dominated sorting method and collaboration
mechanism; (5) evolutionary operators.

5.1. Problem decomposition: species and encoding

Coevolutionary algorithm is used to deal with the
simultaneous optimization of antecedents of fuzzy
rules and parameters of fuzzy sets. So the fuzzy
system is decomposed into two species: antecedents
of fuzzy rules (Species A) and parameters of fuzzy
sets (Species B).

5.1.1 Species A: coding and initial population
Species A represents the index of fuzzy sets that
appear in the antecedent of the fuzzy rule with binary

code. The phenotype of a chromosome is
demonstrated as following:
Bl o Bl | By | | Bal | Ben

where ﬂy={0,1,2,-~-,c}. The number of 0 is

utilized to represent the “dont care” [22] condition;
while other values represent that the j-th fuzzy set of i-
th rule is accepted.

The initial population is generated by introducing a
chromosome that represents the antecedents of the
obtained initial fuzzy system. The remaining
chromosomes are generated randomly.

5.1.2 Species B: coding and initial population

Species B contains all parameters of the
membership functions (fuzzy sets) defined in the
fuzzy system with real code. The first chromosome is
formed as a sequence of genes describing parameters
in the rule antecedent:

Hl :(Vll"”9vcn’o-ll""o-cn)' (13)
Given search space[H™", H™# 7.
P
Hmm =(vlnllm,-”,vgllm,dﬁm,---O'Lr,r;zm), (14)
H™ = (™, vgy 5011 o), (15)

max _ min min max
where Vi s Vi Oy O
minimum values of corresponding membership
functions. The remaining chromosomes are created by

random variation (uniform distribution) around H;

are maximum and

within the search space.

5.2. Collaboration formation of multi-species

In the PMOCCA, individuals of multi-species
collaborate with each other to jointly provide
antecedents of the fuzzy rules. In order to explain how
the species form collaborations explicitly, we give an
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example with five fuzzy rules and two variable, i.e.,
c=5 and n=2. Two illustrational individuals are
selected from each species as:

00 | 30 [ 14 T 15 T 14

Vi1 V52 011 O35

where the first and second line represent individuals
from Species A and Species B respectively. Then
antecedents of the five fuzzy rules are:

Ry :if xy is Ay (v31,073))

Ry :if xp is A3 (V1,011) , Xy 18 435 (v42,047)
Ry :if xy s Ay (V1,011 5 X 18 Agy (vs3,053)
Rs :if x1 is A5y (v1,011) , Xp 18 A5y (v, 042),

where Rj,...,Rs represent the collaborated fuzzy rules,
X|,X, are two variables.

The first and second genes of the first individual
(upper line) are zero, which indicates that none of any
fuzzy set is fired, and the first fuzzy rule is empty, and
is excluded from rule base. The fourth gene of the first
individual is zero, which shows that x, in R, is a don t
care term. All parameters between R; and Rs are
identical, so R; and Rs should merge to one rule in the
process of simplification. Finally, the optimized fuzzy
system contains only two fuzzy rules.

The jointly obtained antecedents above, combined
with consequents computed by formulas (9), integrate
the complete fuzzy system.

5.3. Multi-objective function

In a multi-objective problem, these objectives are
often conflict with each other, so there is no single
optimal solution, and the goal is to find a set of
Pareto-optimal solutions.

Fuzzy modeling requires the consideration of
multiple objectives in the design process, including
precision and interpretability. In this paper, precision
is defined as the root mean square error, while it is
difficult to quantify interpretability. According to the
analysis about interpretability in Section 2, we have
guaranteed characteristics of fuzzy sets (membership
functions) by interpretability-driven methods, so only
the number of rules and the number of fuzzy sets are
included in the objective function.

These mentioned objectives are detailed following.

Precision: the mean square error (MSF) is used as
precision criterion:

N
fl(S)=%Z(y,- ~5 Y (16)
i=1

where N is the number of data, p;is output of fuzzy
system, y; is the measured output.

Interpretability: the number of fuzzy rules £2(S) and
the number of fuzzy sets f£3(S).

The three objectives about fuzzy system can be
formulated as follows

Min £(S), min £,(S), min £(S), amn

where f£i(S) is precision, £(S) is the number of fuzzy
rules, 3(S) is the number of fuzzy sets.

In general, the fuzzy system with high accuracy
owns more fuzzy rules and fuzzy sets, while the fuzzy
system with fewer fuzzy rules and fuzzy sets leads to
low precision, so there is no single fuzzy system
satisfying all the above three objective, and our task is
to get a set of Pareto-optimal fuzzy systems which are
not dominated by each other.

A fuzzy system S, is said to dominate another fuzzy
system S if the following condition holds:

S (S4) < £1(Sp), /2(S4)

(18)
< f2(Sg), (S4) < f5(Sp)
and at least one of the following inequalities holds:
H(S0) < fi(Sp)s 19)
F(S4) < f2(Sp), (20)
F(S4) < f3(Sp) (21)

The condition (18) shows that no objective of S, is
worse than Sp. Any inequality of (19)-(21) means that
at least one objective of S, is better than Sz. When a
fuzzy system S is not dominated by any other fuzzy
systems, S is regard as a Pareto-optimal fuzzy system.

Several multi-objective algorithms have been
proposed, including, NSGA-II [23], PAES [24] and
SPEA [25]. In this paper, we use the NSGA-II
algorithm due to its high searching ability and easy
implementation. For more details about the NSGA-II
algorithm, please see the reference [23].

54. A new non-dominated sorting method and
collaboration mechanism

A classical collaboration strategy of multi-objective
cooperative coevolutionary algorithm has been
proposed by Potter [26]. The multiple objectives are
combined into a single objective using weighted sum
method. The best individual and randomly selected
individuals are selected as representatives. In order to
determine fitness value of individual, the individual
collaborates with representatives of other species to
construct a set of antecedents of fuzzy systems. These
obtained antecedents and consequents combine to
form complete fuzzy systems. Then the objective
values of these fuzzy systems are calculated and the
minimum value is assigned to the individual.

For the sake of clarity, we give an example of how
two species are collaborated with each other, where
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Individuals Selected representatives
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~min ;
N

(b)

Fig. 1. Collaboration mechanism of single species.

the population size is 40 and there are three
representatives. In Fig. 1(a), we gather the best
individual and two randomly selected individuals
acting as representatives for each species. In Fig. 1(b),
one individual of Species A collaborate with
representatives from Species B, thus forming three
solutions (antecedents of fuzzy systems). The
obtained antecedents and the consequents calculated
by formula (9) combine to form complete fuzzy
systems. These fuzzy systems are evaluated based on
the weighted objective function and the minimum
value is assigned as the final fitness to the individual
being evaluated. In a similar way, fitness evaluation of
other individuals in Species A and individuals of
Species B are accomplished.

The algorithm introduced above can only obtain a
single optimal solution, however there is always a set
of Pareto-optimal solutions for a multi-objective
problem. In order to obtain multiple fuzzy systems,
we generalize the NSGA-II algorithm from single
species to multi-species, and propose a new non-
dominated sorting method and collaboration
mechanism described in Fig. 2.

For the sake of clarity, we also use an example with
two species to illustrate the PMOCCA, where the
number of individuals of each species is 40, and the
number of representatives is two.

(1) The antecedents of the initial fuzzy system are
decomposed into the first individual of the two
species. Other individuals of Specie A are

Specie A Specie B
i Al 1 B
Individuals
(€3]
(g)
40 AP 0 B
1 B 1
@) Representatives ( ] a —l b,
o e
-1 ! Alp!
Individuals of Specie A
collaborate with 40 40 4]
representatives of species 1
. 41 1,2
B to form 80 solutions ] A
L‘ 80 40 A:‘Ob}
84 i
( a8
A
Individuals of Specie B 1o w
collaborate with J B;°
representatives of species ﬁ 120 | 2B}
A to form 78 solutions i '
LIS’S 40 240
a;B]
159
40 selected sohutions of J,
parcnt generation :
1 199 [
&
| i !
| S
i
Non-domination | Selected w0 .
4 level and
S crowding ‘
distance sorting ' :
l 199 199
Specie 4 Specie B
P T
) Individuals
(g+l)
a0 A4 a0 B}*“

Fig. 2. Non-dominated sorting collaboration mecha-
nism of the proposed PMCCA.

generated randomly, and other individuals of
Specie B are created by uniform distribution
within the search space.

(2) The first (best) individual and a random
individual are selected as representatives of each
species.
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(3) The individuals in Specie A cooperate with
representatives of Specie B to form antecedents of
fuzzy system. Individuals of Specie B also
construct antecedents in a similar way. The
number of antecedent solutions is 158.

(4) After being simplified, the obtained antecedents
and the consequents calculated by formula (9) are
combined to form complete fuzzy systems. Based
on NSGA-II, the non-dominated sorting and the
crowding distance sorting are performed on the
obtained fuzzy systems with the defined objective
functions, i.e., precision, the number of fuzzy rules
and the number of fuzzy sets, in descending order.

(5) The first 40 fuzzy systems are selected and
decomposed into individuals of two species. The
tournament selection, crossover and mutation are
performed respectively on the two species to
reproduce offspring subpopulations.

(6) If the stop criterion is not meet, go to step (2)~(5),
otherwise the algorithm is stopped. Different from
the first generation in step (3), the 40 solutions of
parent generation are added to the sorting
procedure, thus the total solutions is 199.

5.5. Evolutionary operators

Selection is the first operator applied in the
proposed PMOCCA. For all these two species, a
tournament technique is used to select individuals for
the next generation. In order to avoid divergence of
the algorithm, the tournament is combined with an
elitist strategy to ensure that the best chromosome will
be chosen.

The second operator is crossover. For Species A, the
one-point crossover is adopted due to their binary-
encoding. The simple arithmetic crossover, the whole
arithmetic crossover and the heuristic crossover are
selected randomly in Species B.

The role of third operator, i.e., mutation, is to
introduce diversity into a population. For Species A,
the bit inversion mutation is used due to their binary-
encoding. The uniform mutation, the multiple uniform
mutation and the Gaussian mutation are selected
randomly in Species B.

5.6. Pseudo-code of the algorithm
The pseudo-code of PMOCCA is present in the
following
Begin
g:=0
Initialize fuzzy system F (0)
P(1)=decompose(F (0))
While not done do
gi=g+1
For each species S, S=4, B
Rs (g) = Represent (P (g))
A(g) = Collaborate(Rs (g), P (g))
A'(g) = Simplify(A(g))

C’(g) = Calculate(4'(g))
Fs'(g) = Compose(4'(g), C'(g))

End for
F (g) =NSGA-II (F'(g), F5'(g), F (g-1));
%F0)y=0

P’(g) = decompose(F (g))
P (g+1) = Operate (P'(g));
End while

End
where decompose() converts antecedents of fuzzy
system into species, decompose() converts population
into antecedents of species, Represent() selects
representatives of species, Collaborate() means that
representatives collaborate with individuals to form
antecedents of fuzzy systems, simplify() reduces the
obtained antecedents of fuzzy systems, calculate()
identify consequents of fuzzy systems, NSGA-II()
generates multiple fuzzy systems based on non-
domination level and crowding distance, operate()
executes three evolutionary operators.

6. EXPERIMENTS AND RESULTS

In order to examine the performance of the
proposed PMOCCA, two benchmark problems, the
second-order nonlinear plant and the Mackey-Glass
time series, are demonstrated in this section. Table 1
gives the parameter setups of the algorithm. All
simulation programs are realized under Matlab 7.0
environment,

6.1. Experiment: the second-order nonlinear plant
We consider the second-order nonlinear plant
studied in [4,27-29]:
y(k) = g(y(k =D, y(k - 2)) +u(k), (35)

where

Table 1. Paraméter setups of the PMOCCA.

Parameters Values
Maximum generations 100
Population size 40
Crossover probability of Species A 1
Mutation probability of Species A 0.2
Elitism rate of Species 4 0.1
Crossover probability of Species B 0.85
Mutation probability of Species B 0.1
Elitism rate of Species B 0.025
Best representatives Ny 1
Random representatives N,, 1
Threshold of merging fuzzy sets 0.4
Threshold of merging fuzzy rules 1
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Fig. 3. Input, unforced system and output of the
second-order nonlinear plant.

y(k - 1)y(k Dk -D-03)
1+ y? (k- D+ (k-2)
(36)
The goal is to approximate the nonlinear
component g(y(k—1),y(k—2)) of the plant with a

gk =1),y(k -2))=

fuzzy system. For this purpose, 400 simulated data are
generated from the plant (35). The first two hundreds
of training data are obtained with a random input
signal u(k) uniformly distributed in the interval [-1.5
1.5], while the other two hundreds of validation data
are generated by using a sinusoid input signal
u(k) =sin(27xk/25). The total simulated data are

shown in Fig. 3.

The initial fuzzy system is obtained by the fuzzy
clustering and the least square method. In order to
compare performance of the algorithm with other
published results, the number of fuzzy clusters is five.

The simulation results are summarized in Table 2
where four Pareto-optimal fuzzy systems are
generated. The results indicate that the proposed
method can obtain multiple accurate and interpretable
fuzzy systems.

Wang [4] proposed a new scheme based on multi-
objective hierarchical genetic algorithm to extract
interpretable fuzzy systems. The initial fuzzy system
is constructed uvsing fuzzy clustering, and then is
optimized by the multi-objective genetic algorithm.
The obtained fuzzy systems are almost equivalent to
our results, but the 1# fuzzy system we constructed
has the highest precision performance.

Yen {27] proposed several orthogonal transforma-
tion methods to select fuzzy rules. The initial fuzzy
system contained 25 rules, among which only 20 rules
were remained after simplification. This approach can
construct accurate fuzzy systems, but the obtained
fuzzy systems have too many fuzzy rules and fuzzy
sets.

Table 2. Fuzzy systems of nonlinear plant.

Ref No. | No. MSE MSE
) rules | sets (train) (validation)

5 10 | 1.4032e-3 | 2.6267e-3
[4] 5 3 2.3773e-4 | 3.0116e-4
4 3 5.4611e-4 | 5.4360e-4
4 3 5.6086e-4 | 2.4885e-4
[27] 25 25 | 2.3092e-4 | 4.0717e-4
20 20 | 6.8341le~4 | 2.3836e-4

5 10 4.9e-3 2.9e-3

[28] 5 10 1.4e-3 5.9e-4

5 5 8.3e-4 3.5e-4

4 2 1.40e-4 1.53e-4
[29] 9 3 1.26e-5 1.2e-5
16 4 1.50e-6 3.4e-6
This paper

Initial 5 10 6.0e-3 6.6e-3
1# 4 4 5.9202e-5 | 3.9307e-5
2# 5 3 2.3013e-4 | 2.2895e-3
3# 4 3 3.3833e-4 | 6.0245e-4
4# 3 3 1.6233e-3 | 1.4781e-2

Table 3. 1# fuzzy system of nonlinear plant.

R': If y(k-1) is big, y(k-2) is small, then
g(k)=-0.37453y(k-1)+0.10912y(k-2)
+0.28266

R% If y(k-1) is small, y(k-2) is big, then
g(k)=-0.47701y(k-1)+0.09224y(k-2)

Fuzzy -0.03940

rules | R*: If y(k-1) is big, y(k-2) is big, then
g(k)=0.35558y(k-1)+0.099222y(k-2)
-0.25662

R*:If y(k-1) is small, y(k-2) is small,
then g(k)=0.47591y(k-1)+0.1043y(k-
2) +0.032723

Antecedent parameters

y(k-1): small=[-0.83053, 0.56478],
big=[0.92494, 0.43772]

y(k-2): small=[-0.58531, 0.35528],
big=[0.66867, 0.42768]

Roubos [28] obtained an initial redundant fuzzy
system by fuzzy clustering, and adopted the method of
merging similar fuzzy sets and genetic algorithms to
reduce the initial fuzzy model iteratively and finally
used genetic algorithms to optimize all parameters of
the fuzzy model. The two optimized fuzzy systems
can reach high precision with few rules and sets,
however, all these two fuzzy systems are dominated
by our 1# fuzzy system.

Kim [29] identified antecedents of fuzzy systems
using a unique evolutionary algorithm, and calculated
consequents by least square method. The occurrence



452 Zong-Yi Xing, Yong Zhang, Yuan-Long Hou, and Li-Min Jia

1 -~
// N ~ N
Ve small N\ / big \
v v
05 < N
- PN
/ .
/ \\\ N
S TTas a4 s o 05 1 15
y(k-1)
1 e \\ 7 N
// small / big
0.5 / . .
- ~
/// /// \ \
- L ~_
% as 1 ws o Tes Th T s
y(k-2)

Fig. 4. Membership functions of the 1# fuzzy system
of the nonlinear plant.
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Fig. 5. Comparison of 1# fuzzy system outputs and
real outputs of the nonlinear plant.

of the multiple overlapping membership functions
was resolved with the help of the fitness function. The
obtained fuzzy systems can be assigned meaningful
labels to membership functions, and the highest
precision performance is obtained by the fuzzy system
with 16 rules.

In the obtained 1# fuzzy system, the MSE errors of
training data and validation data are 5.9202e-5 and
3.9307e-5 respectively, which indicate that 1# fuzzy
system has high precision and high generalization
capacity. Compared to other published approaches in
[4,27-29], the 1# fuzzy system also has high
interpretability for its only contains four fuzzy rules
and four fuzzy sets. Table 3 details the obtained 1#
fuzzy system. Fig. 4 depicts the membership functions
of 1# fuzzy system, and Fig. 5 compares the 1# fuzzy
system outputs and real outputs.

6.2. Experiment: Mackey-Glass time series
The Mackey-Glass time series is described as:
ax(t —1)

X=—"—"——bx(2), (33)
1+ xm(t -7)

0.9~

x(t+6)

08+ o
0.7+ i T it
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Fig. 6. Sampling data of x(++6) in the time series.

where a=0.2, »=0.1, and =17 as in [30]. The goal is
to predict x(r+6) from x(¢), x(¢ -12)and x(¢ -18). 1000
data points are generated using the fourth order
Runge-Kutta method with a step length of 0.1 and the
initial condition x (0) =1.2, where 500 pair of data are
used for training and the others for test. The sampling
data of x(#+6) is showed in Fig. 6.

The initial fuzzy system is obtained by the fuzzy
clustering and the least square method. The MSE error
of training data is 0.0657, and the MSE error of test
data is 0.0646. The number of fuzzy rules is 5, and the
number of fuzzy sets is 20.

The interpretability-driven simplification methods
and the multi-objective genetic algorithm are used to
optimize the initial fuzzy system. The performance of
the obtained four Pareto-optimal fuzzy systems is
described in Table 4. The decision-marker can choose
an appropriate fuzzy system according to a specific
situation, either the one with higher interpretability
(less number of fuzzy rules or/and fuzzy sets) or the
one with less error.

Table 4 also shows the comparison with other
published results, which indicates that the proposed

Table 4. Fuzzy systems of nonlinear plant.

Ref No. | No. MSE MSE
) rules | sets (train) (validation)
[4] 9 23 0.0228 0.0239
[29] 16 8 0.0014 0.0013
[30] 129 | 35 0.0315 0.0332
26 | 19 0.0656 0.0671
This paper
Initial 5 20 0.0657 0.0646
1# 5 7 | 0.0052175 | 0.0051334
2# 5 6 0.005299 | 0.0053031
3# 4 6 | 0.0064568 | 0.0063298
4# 5 5 | 0.0085456 | 0.0084214
S# 3 6 0.0085849 | 0.0085999
6 4 5 ] 0.0096844 { 0.009595
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Fig. 7. Membership functions of the 1# fuzzy system
of the time series.

Table 5. 1# fuzzy system of the time series.

R': If x(t-6) is small, x(t-12) is small,
then x(t+6)=0.9831x(t)-43678x(t-
6)+0.8414 x(t-12)-0.01937x(t-18)-
0.02515

R If x(t) is medium, (t-12) is big, x(t-18)
is small, then x(t+6)=-0.50397x(t)+
0.99034x(t-6)-1.125x(t-12)+0.68576
x(t-18)+1.1839

R’ If x(t) is medium, x(t-6) is big, x(t-12)
is big, x(1-18) is big, then x(t+6)=
0.31641x(t)+ 0.15879x(t-6)-0.46131x
(t-12)+0.07292x(t-18)+0.6029

R*: If x(t) is medium, x(t-6) is small, x(t-
18) is big, then x(t+6)=-0.3874x(t)
+0.8729x(t-6)-1.1872x(t-12)-1.2476
x(t-18)+2.8725

R®: If x(t) is medium , x(t-12) is small,
x(t-18) is small, then
X(t+6)=0.4755x(t) +0.17824x(t-
6)+0.4111x(t-12)+0.35525 x(t-18)-
0.05043

Antecedent parameters

x(t): medium =[0.79914,0.10275]
X(t-6): small=[0.67052, 0.063765]
big=[1.0471,0.085645]

x(t-12): small=[0.61178,0.03998]
big=[1.2375,0.04141]

x(t-18): small=[0.66109, 0.03526]
big=[1.2703, 0.04251]

Fuzzy
rules

method can obtain multiple accurate and interpretable
fuzzy systems. The fuzzy systems obtained by Kim
[29] have highest precision performance; however
these fuzzy systems use up to 16 fuzzy rules.

Table 5 details the obtained 1# fuzzy system of time
series. Fig. 7 depicts the membership functions of the

Real output !
Modet output ;1

0.4: . . . . . . . . . B
500 550 600 650 700 750 800 850 900 950 1000

Fig. 8. Comparison of 1# fuzzy system outputs
and real outputs of the time series.

1# fuzzy system, and Fig. 8 compares the 1# fuzzy
system outputs and real outputs of time series.

7. CONCLUSIONS

In this paper, we presented an approach, named
PMOCCA, to construct accurate and interpretable
fuzzy systems. First, preliminaries, including the TS
fuzzy system and the interpretability issues, are stated.
Then, a modified fuzzy clustering algorithm is used to
construct antecedents of fuzzy system, and
consequents are identified separately to reduce
computational burden. Finally, the PMOCCA and the
interpretability-driven simplification are employed to
evolve the initial fuzzy system iteratively; resultantly,
multiple Pareto-optimal fuzzy systems with high
precision and interpretability are obtained. The
simulation results on two benchmark problems
illustrate validity of the method.
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