• 제목/요약/키워드: Fuzzy c-Means clustering

검색결과 310건 처리시간 0.029초

입자화기반 RBF 뉴럴네트워크 (Granular-based Radial Basis Function Neural Network)

  • 박호성;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.241-242
    • /
    • 2008
  • 본 논문에서는 fuzzy granular computing 방법 중의 하나인 context-based FCM을 이용하여 granular-based radial basis function neural network에 대한 기본적인 개면과 그들의 포괄적인 설계 구조에 대해서 자세히 기술한다. 제안된 모델에 기본이 되는 설계 도구는 context-based fuzzy c-means (C-FCM)로 알려진 fuzzy clustering에 초점이 맞춰져 있으며, 이는 주어진 데이터의 특징에 맞게 공간을 분할함으로써 효율적으로 모델을 구축할 수가 있다. 제안된 모델의 설계 공정은 1) Context fuzzy set에 대한 정의와 설계, 2) Context-based fuzzy clustering에 대한 모델의 적용과 이에 따른 모델 구축의 효율성, 3) 입력과 출력공간에서의 연결된 information granule에 대한 parameter(다항식의 계수들)에 대한 최적화와 같은 단계로 구성되어 있다. Information granule에 대한 parameter들은 성능지수를 최소화하기 위해 Least square method에 의해서 보정된다. 본 논문에서는 모델을 설계함에 있어서 체계적인 설계 알고리즘을 포괄적으로 설명하고 있으며 더 나아가 제안된 모델의 성능을 다른 표준적인 모델들과 대조함으로써 제안된 모델의 우수성을 나타내고자 한다.

  • PDF

진화론적 데이터 입자에 기반한 퍼지 집합 기반 퍼지 추론 시스템의 최적화 (Optimization of Fuzzy Set-based Fuzzy Inference Systems Based on Evolutionary Data Granulation)

  • 박건준;이동윤;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.343-345
    • /
    • 2004
  • We propose a new category of fuzzy set-based fuzzy inference systems based on data granulation related to fuzzy space division for each variables. Data granules are viewed as linked collections of objects(data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Granulation of data with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. Numerical example is included to evaluate the performance of the proposed model.

  • PDF

엔트로피 기반의 가중치와 분포크기를 이용한 향상된 FCM 알고리즘 (Improved FCM Algorithm using Entropy-based Weight and Intercluster)

  • 곽현욱;오준택;손영호;김욱현
    • 대한전자공학회논문지SP
    • /
    • 제43권4호
    • /
    • pp.1-8
    • /
    • 2006
  • 본 논문은 엔트로피 기반의 가중치와 클러스터 분포크기를 이용한 향상된 FCM(Fuzzy C-Mean)알고리즘을 제안한다. FCM 알고리즘은 영상분할에서 일반적으로 많이 사용되는 퍼지 클러스터링 방법이다. 그러나 공간정보를 포함하지 않기 때문에 잡음 등에 민감하고, 클러스터를 이루는 특정들의 분포에 따라 화소들을 정확하게 분류할 수 없다. 이러한 단점을 해결하기 위해서 FCM 알고리즘의 소속정도를 연산할 때 클러스터 분포크기와 이웃 화소의 공간정보를 이용한 엔트로피 기반의 가중치를 적용한다. 실험결과에서 제안한 방법이 기존의 방법들보다 잡음에 강건하며 분할결과를 보였다.

FCM 알고리즘을 이용한 요부 근육 양자화 (Quantization of Lumbar Muscle using FCM Algorithm)

  • 김광백
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권8호
    • /
    • pp.27-31
    • /
    • 2013
  • 본 논문에서는 요부 초음파 영상에서 퍼지 C-Means 클러스터링을 이용한 양자화 기법을 제안한다. 제안된 방법은 초음파 영상에서 나타난 명암도를 이용하여 n개의 그룹으로 클러스터링한다. 그리고 각클러스터의 중심 값을 기준으로 정렬한 뒤, 각 그룹에 지정된 색상을 요부 초음파 영상에 나타낸다. 본 논문에서 제안하는 기법과 히스토그램 기반 양자화 기법에 대해 15장의 요부 초음파 영상에 적용한 결과, 본 논문에서 제안된 양자화 방법이 효과적인 것을 확인할 수 있었다.

Automatic Generation of Fuzzy Rules using the Fuzzy-Neural Networks

  • Ahn, Taechon;Oh, Sungkwun;Woo, Kwangbang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1181-1186
    • /
    • 1993
  • In the paper, a new design method of rule-based fuzzy modeling is proposed for model identification of nonlinear systems. The structure indentification is carried out, utilizing fuzzy c-means clustering. Fuzzy-neural networks composed back-propagation algorithm and linear fuzzy inference method, are used to identify parameters of the premise and consequence parts. To obtain optimal linguistic fuzzy implication rules, the learning rates and momentum coefficients are tuned automatically using a modified complex method.

  • PDF

퍼지 클러스터링을 이용한 심전도 신호의 라벨링에 관한 연구 (A Study on Labeling of ECG Signal using Fuzzy Clustering)

  • 공인욱;이정환;이상학;최석준;이명호
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.118-121
    • /
    • 1996
  • This paper describes ECG signal labeling based on Fuzzy clustering, which is necessary at automated ECG diagnosis. The NPPA(Non parametric partitioning algorithm) compares the correlations of wave forms, which tends to recognize the same wave forms as different when the wave forms have a little morphological variation. We propose to apply Fuzzy clustering to ECG QRS Complex labeling, which prevents the errors to mistake by using If-then comparision. The process is divided into two parts. The first part is a parameters extraction process from ECG signal, which is composed of filtering, QRS detection by mapping to a phase space by time delay coordinates and generation of characteristic vectors. The second is fuzzy clustering by FCM(Fuzzy c-means), which is composed of a clustering, an assessment of cluster validity and labeling.

  • PDF

Blind Channel Equalization Using Conditional Fuzzy C-Means

  • Han, Soo-Whan
    • 한국멀티미디어학회논문지
    • /
    • 제14권8호
    • /
    • pp.965-980
    • /
    • 2011
  • In this paper, the use of conditional Fuzzy C-Means (CFCM) aimed at estimation of desired states of an unknown digital communication channel is investigated for blind channel equalization. In the proposed CFCM, a collection of clustered centers is treated as a set of pre-defined desired channel states, and used to extract channel output states. By considering the combinations of the extracted channel output states, all possible sets of desired channel states are constructed. The set of desired states characterized by the maximal value of the Bayesian fitness function is subsequently selected for the next fuzzy clustering epoch. This modification of CFCM makes it possible to search for the optimal desired channel states of an unknown channel. Finally, given the desired channel states, the Bayesian equalizer is implemented to reconstruct transmitted symbols. In a series of simulations, binary signals are generated at random with Gaussian noise, and both linear and nonlinear channels are evaluated. The experimental studies demonstrate that the performance (being expressed in terms of accuracy and speed) of the proposed CFCM is superior to the performance of the existing method exploiting the "conventional" Fuzzy C-Means (FCM).

Comparison of Classification Rate Between BP and ANFIS with FCM Clustering Method on Off-line PD Model of Stator Coil

  • Park Seong-Hee;Lim Kee-Joe;Kang Seong-Hwa;Seo Jeong-Min;Kim Young-Geun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권3호
    • /
    • pp.138-142
    • /
    • 2005
  • In this paper, we compared recognition rates between NN(neural networks) and clustering method as a scheme of off-line PD(partial discharge) diagnosis which occurs at the stator coil of traction motor. To acquire PD data, three defective models are made. PD data for classification were acquired from PD detector. And then statistical distributions are calculated to classify model discharge sources. These statistical distributions were applied as input data of two classification tools, BP(Back propagation algorithm) and ANFIS(adaptive network based fuzzy inference system) pre-processed FCM(fuzzy c-means) clustering method. So, classification rate of BP were somewhat higher than ANFIS. But other items of ANFIS were better than BP; learning time, parameter number, simplicity of algorithm.

진화론적 정보 입자에 기반한 퍼지 관계 기반 퍼지 추론 시스템의 최적 설계 (Optimal Design of Fuzzy Relation-based Fuzzy Inference Systems Based on Evolutionary Information Granulation)

  • 박건준;김현기;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.340-342
    • /
    • 2004
  • In this paper, we introduce a new category of fuzzy inference systems baled on information granulation to carry out the model identification of complex and nonlinear systems. Informal speaking, information granules are viewed as linked collections of objects(data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Granulation of information with the aid of Hard C-Means(HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polyminial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms(GAs) and the least square method. The proposed model is contrasted with the performance of the conventional fuzzy models in the literature.

  • PDF

퍼지 클러스터링을 이용한 칼라 영상 분할 (A study on the color image segmentation using the fuzzy Clustering)

  • 이재덕;엄경배
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 춘계종합학술대회
    • /
    • pp.109-112
    • /
    • 1999
  • Image segmentation is the critical first step in image information extraction for computer vision systems. Clustering methods have been used extensively in color image segmentation. Most analytic fuzzy clustering approaches are divided from the fuzzy c-means(FCM) algorithm. The FCM algorithm uses fie probabilistic constraint that the memberships of a data point across classes sum to 1. However, the memberships resulting from the FCM do not always correspond to the intuitive concept of degree of belonging or compatibility. Moreover, the FCM algorithm has considerable trouble under noisy environments in the feature space. Recently, a possibilistic approach to clustering(PCM) for solving above problems was proposed. In this paper, we used the PCM for color image segmentation. This approach differs from existing fuzzy clustering methods for color image segmentation in that the resulting partition of the data can be interpreted as a possibilistic partition. So, the problems in the FCM can be solved by the PCM. But, the clustering results by the PCM are not smoothly bounded, and they often have holes. The region growing was used as a postprocessing after smoothing the noise points in the pixel seeds. In our experiments, we illustrate that the PCM us reasonable than the FCM in noisy environments.

  • PDF