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Blind Channel Equalization Using Conditional
Fuzzy C-Means

Han, Soowhan'

ABSTRACT

In this paper, the use of conditional Fuzzy C-Means (CFCM) aimed at estimation of desired states
of an unknown digital communication channel is investigated for blind channel equalization. In the pro—
posed CFCM, a collection of clustered centers is treated as a set of pre-defined desired channel states,
and used to extract channel output states. By considering the combinations of the extracted channel
output states, all possible sets of desired channel states are constructed. The set of desired states charac-
terized by the maximal value of the Bayesian fitness function is subsequently selected for the next fuzzy
clustering epoch. This modification of CFCM makes it possible to search for the optimal desired channel
states of an unknown channel. Finally, given the desired channel states, the Bayesian equalizer is im—
plemented to reconstruct transmitted symbols. In a series of simulations, binary signals are generated
at random with Gaussian noise, and both linear and nonlinear channels are evaluated. The experimental
studies demonstrate that the performance (being expressed in terms of accuracy and speed) of the pro-

posed CFCM is superior to the performance of the existing method exploiting the “conventional” Fuzzy
C-Means (FCM).

Key words: Conditional Fuzzy C-Means, Bayesian Likelihood Fitness, Blind Equalization, Desired

Channel States, Channel Output States

1. INTRODUCTION

Most of digital communication channels suffer
from inter-symbol-interference (ISI) due to non-
ideal channel characteristics. The ISI will increase
the symbol error rate at the receiver, sometimes
preventing correct detection of a transmitted
signal. The problem becomes more severe in the
presence of additive white Gaussian noise
(AWGN). Furthermore, the nonlinear character of

ISI that often arises in high speed communication
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channels degrades the performance of the overall
digital communication system [1]. As a result,
channel equalizers are required to remove the
channel distortion. Most of them take advantage
of the use of known training sequences to adap-
tively extract channel information. The problem
with this approach is that it is bandwidth
consuming. To alleviate this problem, blind-equal-
ization algorithms have been proposed [2-4]. Here,
instead of using training sequences, only an input
signal and a knowledge of statistical properties of
noise are required. The original transmitted mes-
sage is recovered only from the received sequence
that is corrupted by noise and ISI without any
training sequence or a priori knowledge of the
channel. However, because of inherent simplicity,
most works for blind channel equalization deal with
linear channels that are often inadequate for mod-
eling channels which exhibit nontrivial non-

linearities [5-7]. This paucity does not mean blind
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nonlinear equalization methods exhibit less sig-
nificance. Considering that nonlinear distortion ex—
ists in many communication systems such as high
power amplifiers as well as high-density magnetic
and optical storage channels, studying blind nén—
linear system equalization methods comes with
significant practical importance. Thus, in this pa-
per, the blind equalization method, which could
serve as a solution to both linear and nonlinear
channels at the same time, is presented.

Early works done on blind nonlinear channel
equalization have focused on channel estimation by
exploiting high order statistics (HOS) [8-10]. The
resulting equalizers suffer from slow convergence
and when optimized could be easily trapped in local
minima. The blind estimation of Volterra kernels,
which characterize nonlinear channels, was pre-
sented in [11], while a maximum likelihood (ML)
method implemented via expectation-maximiz—
ation (EM) was introduced in [12]. Although these
approaches seem to be applicable to nonlinear
channels, the Volterra approach suffers from an
enormous computational complexity required to
construct a corresponding “inverse” Volterra filter,
and the ML approach requires some prior knowl-
edge of the nonlinear channel structure to estimate
the channel parameters. The approach involving a
nonlinear structure such as multilayer perceptrons
being trained to minimize some cost function, has
been investigated in [13]. However, in this method,
the structure and the complexity of the nonlinear
equalizer must be specified in advance. The sup-
port vector (SV) equalizer proposed by Santamaria
et al. [14] can be viewed as a possible solution for
both linear and nonlinear blind channel equal-
ization, but it still suffers from high computational
cost of its iterative reweighted quadratic program-
ming procedure. The deterministic approach dis-
cussed in [15] based on second order statistic
(SOS) has been successfully used to design blind
equalizers of nonlinear channels, but its computa~
tional cost is also very high (requiring two matrix

eigen—decompositions). Another SOS-based meth-
od provided by Raz and Van Veen [16] has limited
practical application as it requires that every non-
linear sub—channel be linearizable by an FIR
Volterra system. Furthermore, for this method, the
sampling rate for the received signal has to be
higher than the baud rate, otherwise a multi-sen-
sor array must be utilized. In addition, the signal
to noise ratio (SNR) should be kept relatively high.
A unique approach to blind channel equalization
was offered by Lin and Yamashita [17]. In this
method, they used the simplex Genetic Algorithm
(GA) to estimate the optimal channel output states
instead of estimating the channel parameters in a
direct manner. The desired channel states of an
unknown channel were constructed from these es—
timated channel output states, and placed at the
center of their RBF equalizer. With this approach,
the complex modeling of the nonlinear channel can
be avoided and the method works well within a
simple single input single output (SISO) communi-
cation environment. Additionally, this kind of ap-
proach can be applied to a linear channel as well,
because it does not estimate the channel parame-
ters but the channel output states directly, which
is not dependent on the type of the channel structure.
For the better performance in terms of speed and
accuracy, this approach has been implemented with
a hybrid genetic algorithm (that is genetic algo-
rithm, GA merged with simulated annealing (SA);
GASA) [18]. However, in general, the GA based
algorithms may visibly suffer from their poor con—
vergence properties. To overcome these weak-
nesses, FCM, one of the representative clustering
algorithms which exhibits shorter processing time
than the GA-based methods, has been modified,
and the faster convergence speed along with the
reliable estimation accuracy in search of the opti-
mal channel output states have been achieved [19,20].

However, with low SNRs, the estimation accu-
racy of the modified FCM (MFCM) presented in
[19] and [20] is no longer superior to GA-related
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approaches even though it comes with the faster
search speed. For real-time use, the search algo-
rithm should be robust to intensive noise commu-
nication environments. This leads to consider the
use of some modified version of the “conventional”
FCM-based algorithm. A suitable modification
comes in the form of a so-called Conditional FCM,
or CFCM for brief. The CFCM was first in-
troduced in [21], and successfully applied to chan-
nel equalization problem [22]. In CFCM, the con—
ditioning aspect of the clustering mechanism is
introduced by taking the conditioning variable de-
fined over the corresponding patterns. More spe-
cifically, the conditioning variable describes a level
of involvement of incoming input pattern in the
constructed clusters. It can be helpful to reduce
the influence of heavy noise—corrupted sequences
in the underlying clustering procedure. Thus, in
the proposed algorithm, CFCM is utilized to over-
come this noise effect. It is accomplished by the
use of Bayesian likelihood fitness function and the
involvement of the relation between desired chan-
nel states and channel output states. The final
clustered units of the CFCM with this mod-
ification represent the desired states of the un-
known channel and are utilized to compute the de-
cision probability of Bayesian equalizer for blind
equalization. Its performance is compared with the
one using the MFCM presented in [20]. In the ex-
periments, both of linear and nonlinear channels
with the heavy noise (SNR=0, 25, 5, 7.5, 10db) are
evaluated.

The organization of this paper is structured as
follows. Section 2 develops an optimal Bayesian
solution for linear/nonlinear channel equalization;
Section 3 shows the relationships between the de-
sired channel states and the channel output states.
In Section 4, the modification of CFCM is
discussed. The simulation results including some
comparative studies are provided in Section 5.

Conclusions are given in Section 6.

2. OPTIMAL BAYESIAN SOLUTION FOR
CHANNEL EQUALIZATION

The channel equalization system discussed here
is depicted in Fig. 1. A digital information sequence
s(k) is transmitted through the channel, which is
composed of a linear portion described by H{(z) and
a nonlinear component N(z), governed by the fol-

lowing expressions,

Nonlinear channel

Fig. 1. An overall structure of channel equalization

svstem.
f(k):éh(i)s(k—i) ¢}

¥(k)=D,y(k)- D,y(k)" - D,5(k)" - D,y(k)" (2)

where p is the channel order and D; stands for the
coefficient of the i nonlinear term. This non-
linearity in a channel can be due to nonlinearities
associated with nonlinear devices used in the
transmitter and receiver. The transmitted symbol
sequence, s(k), is assumed to constitute an equi-
probable and independent binary sequence taking
values from a two-valued set 121}, The channel
output, ¥(k), is assumed to be corrupted by the
AWGN, e(k). Given this, the channel observation,
v(k), can be expressed as

y(k)=3(k)- e(k) (3
If g denotes the equalizer order (viz. a number
of tap delay elements in the equalizer), then there
exist M =27%' different patterns of input se-
quences that may be received (where each compo-

nent in (4) is either equal to 1 or - 1).

s(k)=[s(k).s(k- 1)+ ,s(k- p- q)] (4)

For a specific channel order and equalizer order,

these M input patterns influence the input vector
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of equalizer, which is shown in (5) for a noise-free
case.

Pk)=[9k ). (k- 1), 5(k- q)] (5)

The noise—free observation vector, p(k), is re-

ferred to as the desired channel states, and can be

¥ -1
partitioned into two sets, Yq,; and Yq,d, as shown
in (6) and (7), depending on the value of s(k-d),
where d is the required time delay.

Yoi={ 90 s(k-d)=-1} ®)

Yoo={ 3| s(k-d)=-1} (7)

In case of a linear channel (D;=1, D>=0, D=0 and
D#0), (k) in (3) and (5)—(7) is just replaced with
V(k) in (1). The task of the equalizer is to recover
the transmitted symbols, s(k-d), based on the ob-
servation vector, y(k). Because of the AWGN, the
observation vector is a random process having
conditional Gaussian density functions centered at
each of the desired channel states, ¥(¥). The de-
termination of the value of s(k-d) becomes a deci-
sion problem. Bayes decision theory [23] provides
the optimal solution to the general decision
problems. It is applied here and the optimal decision

function for Bayesian equalizer can be represented
as follows, see [24,25]

Sul k= 2P yk)-y [ 207, (®)

’gexp(_ny(k)“,";}”Z/20'3)

{+1, Fu(y(k))20
Sk dy=sgn( o »(k)y= =1, fy(p(k)j<0 @

where ¥;' and »;' are the desired channel states
belonging to sets Y,; and Y,., respectively, and
their number of elements in these sets are denoted
by n,’

variance. The optimal equalizer solution in (8) de-

-1 2 . .
and 7, . Furthermore €, is the noise

pends on the desired channel states. In other

words, the solution of blind channel equalization

crucially depends on how to find the desired chan-

nel states, ¥;" and ¥;', only from the observation
vector y(k). In this study, the modified version of
CFCM is investigated in search of the optimal out-
put states of an unknown channel, and its desired
channel states are configured with the searched
channel output states. The construction of desired
channel states by using the relation with channel
output states will be explained in the next section.
The optimal Bayesian decision probability in (8) is
used to derive the fitness function of proposed
CFCM, and also utilized as an equalizer, along with
(9), for the reconstruction of the transmitted
symbols.

3. DESIRED CHANNEL STATE CON-
STRUCTED BY CHANNEL OUTPUT
STATE

In the previous section, it has been observed that
the knowledge of the desired channel states is es—
sential for the evaluation of the optimal decision
function in the Bayesian equalizer. The estimation
of channel states requires the knowledge of the
channel. However, under most circumstances, it
may not be available. Additionally, the estimation
of channels for nonlinear channels is very difficult
in a direct manner. Thus, in the proposed algo—
rithm, the estimation of desired channel states is
accomplished by using the scalar channel states
called “channel output states”. The determination
of these channel output states is simple and its
computational complexity is independent from the
equalizer order. Once the desired channel states
have been constructed by using the estimated
channel output states, finding the decision function
of Bayesian equalizer is straightforward.

The following example is considered to illustrate
the relationship of desired channel states and chan—
nel output states. If the channel order is taken as
p=1 with H(z)=0.5- z', the equalizer order ¢ is

equal to 1, the time delay d is also set to 1, and
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the nonlinear portion is  described by
D, =1,D,=01D,=0.05D,=0.0 (see Fig. 1),
then the eight different desired channel states
(2777 =8) may be observed at the receiver in a
noise—free case. Here, the output of the equalizer
should be §(k- 1), as shown in Table 1. From this

table, it can be seen that the desired channel states
[)A’(k)’f/(k - 1)] are composed of the elements of the

channel output states, {aI,aZ,a3,a4 }, where for this
particular channel we have

a,=189375a,=-048125,a,=0.53125 and a,=- 1.44375
The length of dataset, #, is determined by the
channel order, p, such as 27’ =4, which is in-

dependent from the equalizer order. In general, if

=1 and d=1, the desired channel states for ¥, and
Y. are (a,a), (ana), (asa), (aza), and (azas),
(a0, (asaz), (ag,ay), respectively. A change in the
decision delay only changes some of the positive
states to negative states and equal number of neg—
ative states to positive states. For example, in case

of d=0, the channel states, (a;a;), (a;a), (asa3),
{azas), belong to Y11] , while (as,ap), (azaz), (ai,a3),

(as,as) belong to ¥,/ . This relation is always valid
for the channel that has a one-to-one mapping be-

tween the channel inputs and outputs [17]. Thus,

the desired channel states can be derived from the
channel output states if the channel order, p, is as—
sumed to be known, and the main problem of blind
equalization can be changed to focus on the deter—
mination of the optimal channel output states from
the received patterns.

It is known that the Bayesian likelihood (BL),
given by (10), is always maximized with respect
to the desired channel states derived from the opti—

mal channel output states [26].

BL =] max(f;(k), /3 (k) (10)

2/2d§>,

where [, (k) :Zexp (_”J’(k)—yfl

\ 2
B‘I(k):iz::teXp(—HJ’(k)—J’fI /2¢2) and L is the

length of the received sequences. Therefore, the
BL is utilized as the fitness function (FF) of the
proposed algorithm to find the optimal channel
output states. Being more specific, the fitness
function is taken as the logarithm of the BL, that
is
L-1
FF = log(max(f;" (k), 5" (k))) 11)
k=0
The determination of the maximum FF is not

possible without knowledge of channel structure

Table 1. The relation between desired channel states and channel output states

Nonlinear channel with ,D,=1D,=0.1,D,=0.05,D,=0.0, and d=1

Transmitted symbols Desired channel states Output of equalizer
sCk stk Ds(k- 2) 50k) k- 1) By channel output states, Stk- 1)
{a],az,a3,a4}
1 1 1 1.89375  1.89375 (a.a;) 1
1 1 -1 1.89375 - 0.48125 (a;,a;) 1
-1 1 1 0.53125 1.89375 (as.a;) )
-1 1 -1 0.53125  -048125 (as,ay) 1
1 -1 1 - 048125 0.53125 (ay,a;) -1
1 -1 -1 -0.48125 - 1.44375 (aj.a,) -1
-1 -1 1 - 1.44375 0.53125 (as.a;) -1
-1 -1 -1 -1.44375 - 1.44375 (ag.ay) -1
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[17]. In addition, from the relation between FF and
channel output states shown in Fig. 2 (where sev-
eral local maxima exist), it cannot be easily solved
by conventional gradient-based methods. That is
one of the reasons a clustering algorithm is consid-
ered as a way to find the maximum FF. In this
approach, a new CFCM based algorithm is devel-
oped and evaluated in search of the optimal channel
output states which maximize FF.

FF vs. channel output states
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Fig. 2. FF vs. channel output states (a; and as) for
the channel in Table 1 (a2 and az are set
to their optimal values).

4. CONDITIONAL FUZZY CLUSTERING
FOR OPTIMAL CHANNEL STATES

Before introducing the proposed CFCM to be
used to search the optimal channel states for blind
channel equalization, the previously developed ver-
sion of MFCM presented in [20] should be de-
scribed at first. This is also justified by the fact
that these two algorithms exhibit the same
structure.

In comparison with the standard version of the
Fuzzy C-Means (FCM) presented in [27], the
MFCM comes with two additional stages. One of
them concerns the construction stage of all possi-

ble data set of desired channel states with the esti~
mated elements of channel output states. The other
is the selection stage for the optimal desired chan-
nel states among them based on the Bayesian like-
lihood fitness function shown by (11). For the
channel shown in Table 1, the four elements
(277" =4) of channel output states, {alrazla_g!a‘;},
are required to construct the optimal desired chan-

nel states. If the candidates for these elements,

{01102,03104}, are randomly initialized, twelve (4!/2)
different possible data sets of desired channel

states can be constructed by completing matching
between {C,,Cz,cycz,} and i‘a,,az,ag,a‘,}. To facili-

tate fast matching, the arrangements of

%11%,03,04} are saved as a certain mapping set
C such that ((1)=1,234, ((2)=1,24,3,
,C(12)=3,2,1,4 before the search process starts.
For example, the notation ((2)=1,2,4,3 means that
the set of desired channel states is constructed
with ¢; for a;, ¢z for az, ¢4 for as, and ¢z for as in

Table 1. The desired channel states for this set are
described as Y: cr2) (y: _cr2) and yr _cc2y for sets Y

and Y, 11, respectively), and its fitness function in
(11) is presented by FF(2). As mentioned at the
end of Section 3, if the set of desired channel states
by a combination C(2) is optimal, it has a max-
imum value [26]. Thus at the next stage, a data
set of desired channel states, which has a max—
imum Bayesian fitness value, is selected as shown
below
lindex_j, max_FF)=max(FF(1),FF(2),--,FF(12))
(12)

This data set (Yi_ccmaes_j;), which is the set of
desired channel states configured by the selected
Clindex_j), is utilized as a center set in the conven-
tional FCM algorithm. Subsequently the partition
matrix U is updated and a new center set, J:, is
sequentially derived with the use of this updated
matrix U. These are expressed as
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(m+1) _ ]

2
(m)
ng Hy(k) - yi‘C(indexij)H

= (k) - y,(:"é(,‘,,mfj) ) (13)
Ll rimi) ¥

i -1 N

Z(U';m ’ )Z (14)

k=0

where ¥{™ " is the estimated center set at the
(m+D)" iteration and ns is the total number of cen-
ter vectors (ns=8 for the channel in Table 1). In
the next epoch, the new four candidates for the ele-

ments of optimal output states are extracted from

this new center set, ¥, ", based on the relation

presented in Table 1. The eight centers in the new

m- 1
center set, .V,( ), are treated as the desired chan-—

nel states constructed by the elements of channel
output states, {aj,apa},a,; }, shown in Table 1, and
thus each value of the new <C,,CZ,CJ,C,,} is replaced

with each one of the WI,az,ag,%} in the new center

set as in (15), respectively.

-1
c""=a, in

>

V" where r=1234 (15

With this new set of candidates, the steps are
repeated again until the Bayesian likelihood fitness
function is not changed or the maximum number
of iteration has been achieved. More details about
MFCM can be found in [20].

The MFCM illustrated above showed the better
performance than the existing hybrid GA algorithm
in terms of speed and estimation accuracy, how-
ever, at low SNRs, the differences of accuracy for
both algorithms are not significant [19,20]. As
mentioned in Section 2, the received symbol, y(k),
is a random process having conditional Gaussian
density functions centered at each of the desired
channel states because of the use of the AWGN.
Thus, under low SNRs, the noise variance Cf is
high and the received patterns are quite scattered,
which makes it difficuit for the MFCM to estimate
their correct centers. This weakness of MFCM to

significant level of noise can be overcome by ap-
plying the different weights to each of received
patterns, which depend on their distances to the
constructed clusters. To be more specific, the clos-
er the received patterns to the clusters, the higher
weight is attached and consequently more influen—
tial it becomes in the clustering process. This can
be accomplished by using the clustering procedure
of the CFCM. In the CFCM, the conditioning aspect
of the clustering mechanism is introduced by tak-

ing into consideration the conditioning variable as—
suming values, i S Ji on the corresponding

patterns [21]. Here fi taking values in the unit

interval describes a level of involvement of re-

ceived symbol, y(k). For example, if f; =0, the
i received pattern is regarded as meaningless in
the clustering procedure and the calculations of the
resulting prototypes are not affected by this
element. Subsequently, the calculations of the par-
tition matrix U do not take this into consideration.
On the other hand, the pattern for which f; =1
contributes to the clustering process to the highest
extent. The membership degree is described as fol-

lows
g h
ng Hy(k) - yi(mc)/index f)”
=1 ”.V(k) - yl(i"c)undax,j/” ) (16)

For this application to search the optimal chan-

nel states from the noise-corrupted received pat-

terns, the new conditional constraint Je in (16)
should contain the distance information of each of
received patterns, and it has a high value if the cor—
responding pattern is closely located at the esti-
mated center. It is known that the Bayesian like~
lihood (BL) by (10) is always maximized with re-
spect to the optimal desired channel states and uti—
lized as the fitness function of proposed CFCM by
(11). In addition, for the calculation of BL, if a re~
ceived pattern is located near the optimal desired

channel states, y,?l or y,?l, this pattern produces
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a higher value of f;'(k) or f;'(k) in (10), and
the BL becomes to be larger. Therefore each com—
ponent of BL for the received patterns is utilized
as the conditional constraint f; (after normal-

ization). The computational details are described as

follows
nf, =max( f," (k). f,'(k)) (17)
Jo.=nf,/max(nf, ) (18)

while its effectiveness is demonstrated in Fig. 3.
As shown in Fig. 3, the values of the conditional

constraint for noisy patterns are relatively very

The optimal desired channel states of the channel shawn in Table 1

low (indicated by the bright color in Fig. 3(c)). On
the other hand, in the proposed CFCM, the received

patterns located near the optimal channel states are

more weighted by the conditional constraint fi
(close to black color in Fig.3(c)) and generated a
higher contribution to the clustering procedure.
The resulting estimation accuracy is increased
even with low SNRs as it will be shown in the
next section. Thus in the proposed search algo—
rithm, the partition matrix U is updated by (16)
instead of (13) in MFCM and the conditional con-
straint by (17) and (18) is applied. It is summarized

received patterns under 5 dB SNR

. 3 T — —
& Negative states (] Positive states
2r ) o T
tr 4
Py fal
20 1 )
B4 =
a o
At 4
A A

2} 4

3 1 f . 1 L

-3 -2 -1 0 1 2 3

y(k)
(a) optimal desired channel states
received patterns under 5 dB SNR

3 T T T -

2F 4

1F 4
o :
=

RS 4

2F E

3 L 1 L . L 3 . . . . L

3 2 1 0 1 2 3 3 2 1 0 1 2 3

¥
(c) received patterns displayed by
fr @ 1(black) ¢ O(white)

¥k
d) received patterns only for f; >0.5

Fig. 3. The optimal desired states for the channel shown in Table 1(a), the received patterns under 5 dB
SNR(b), and patterns with their conditional constraint fx after 10 epochs of proposed CFCM (c)(d).
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in the following pseudo—code.

begin
save arrangements of candzdates €,,C,,C5,C 4}
to C
randomly initialize the candidates,461,cz,c3,c,,}
while (new fitness function - old fitness
function) < threshold value
for j=1 to C size
map the arrangement of candidates, Clj] ,
to ﬁ‘al,az,aj,tg}
construct a set of desired channel states
based on the structure shown in table 1
calculate its fitness function (FF[j])
by eq. (11)
end
find a data set which has a maximum FF
inj=1.C size : eq. (12)
find the conditional constraint fi for the
selected data set:: egs. (17) & (18)
update the membership matrix U by the data
set utilized as a center set . eq. (16)
derive a new center set by the U: eq. (14)
extract the candidates,{c,,cz,cj,q}, from the
new center set based on the structure shown
in table I and C(1): eq. (15)
end

end

In the proposed search algorithm, all possible
sets of desired channel states are constructed with
the candidates by using the structure shown in
Table 1 and a data set which exhibits a maximum
fitness value is always selected. Therefore, the set
of desired channel states produced by the proposed
CFCM is always close to the optimal set, and its
first half presents the desired channel states for
Y[,zl and the rest presents for Y[,z], or reversely. In
addition, as the fast searching of MFCM in [19]
and [20], the proposed CFCM does not need to
check all of the possible arrangements, C(1),C(2),

--,(X12), to find the data set which has a maximum
FF after the first couple of while-loop. It is because

the new candidates, {01,02,03,04}, are extracted by
using the arrangement C(I) as shown in (15) at
the end of while-loop and thus the set of desired
channel states constructed by C(I) always has the
maximum FF after couple of clustering epochs.
Therefore, in our experiments, for the fast search-
ing of proposed CFCM, the for-loop in the pseu—
do-code is skipped if the selected index j has not
been changed during the last 5 epochs. From this
moment, the set of desired channel states only by
C(1) is constructed with the new candidates and
utilized for further process. The flowchart of the
proposed CFCM with fast searching is illustrated

in Fig. 4.
| Randoimty initialize the candidates (¢, ¢ ¢ ¢J). }——l

‘The index j i Construct all possibie set of desired
changed durmg channel states by mapping (¢, ¢ ¢3
last 5 epochs ? co) 10 {ay, az s, ).

!

Calculate  each of their fitness
function FF by eq. (11}

!

Find the data set which has a
maximum FF as in eq. (12) and
save the selected index_j.

Construct the set of desired channel
states by the arr:mgcmem (1} and
caleulate its ¥ by eq. (11).

Extract the new
candidates, (¢, ¢ ¢3 €4).
from the new center set

Derive 2 new center set
by eq. (14).

Update the  partition
matrix U by eq. (16},

Estimated desired channel states 1

Calculate the wndluuna!
constraint £ eqs.
7y & (18).

Fig. 4. Flowchart of the proposed CFCM with fast
searching.

5. EXPERIMENTAL RESULTS AND
PERFORMANCE EVALUATION

In this section, the proposed CFCM is compared
and evaluated vis—a-vis the previously developed
algorithm which also estimates the optimal channel
states of unknown channel to solve the problem of
blind equalization. As mentioned in the in—
troduction, the MFCM presented in [19] and [20]
showed better performance than the GASA [18]
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and the simplex GA [17] in terms of speed and
accuracy. To demonstrate the effectiveness of the
method, blind equalizations realized with the use
of the MFCM and the proposed CFCM are consid—-
ered in the experiments. Four channels including
a linear model are discussed. Channel 1 (shown in
Table 1) and 2 stand for two different nonlinear
models with the channel order p=1, and channel 3
concerns a linear model (here the nonlinear terms
in channel 1 and 2 have been removed). These
three channels were discussed in [17], [18] and [20].
The last one (channel 4) is for a nonlinear model
with the channel order p=2 as presented in [19] and
[28]. The detailed description of the channels is

presented below.

Channel 2 (nonlinear): H(z)=0.5- 1.0z,
D, =1D,=0,D,=-09,D, =0, and d=1

Channel 3 (linear): H(z)=05- 1.0z,
D,=1D,=0,D,=0,D,=0 and d-1

Channel 4 (nonlinear with p=2):
H(z)=0.3482- 0.8704z"" - 0.3482z7*,
D,=1,D,=02,D,=0,D,=0, and d-1

For channel 1, 2 and 3, the channel order p, the
equalizer order g, and the time delay d are 1, 1,

and 1, respectively. Thus, the output of the equal-
izer should be 5( k- 1), and the eight desired chan-

nel states for ¥, 11 and ¥ 1 composed of the four

channel output states (2”7’ =4, a,,4a,,a;,a,) as
shown in Table 1 will be observed at the receiver
in a noise-free case. In channel 2 for a nonlinear
model, 4,,9,,4;,4, are 15375, 0.3875, —0.3875 and
~1.5375, respectively, and for channel 1, they are
illustrated in Table 1. In channel 3 for a linear mod-
el, where nonlinear terms of channel, Dz, D3, and
Dy, are equal to zeros, 9,,9,,8;,9, agre 1.5 05, 05
and -1.5, respectively. In channel 4, the channel or-
der p is 2 and thus there exist the sixteen desired
channel states (22’ = J6) composed of the eight

channel output states (27’ =8, a,,a,,a,,+,a,).

The desired channel states, (ai,a1), (ai,az), (aszas),
Y—/

(az,a0), (as,an), (as,a2), (asa3), (asas), belong to X,

s

and (asas), (a3a6), (@), (ases), (arnas), (a7a),

(as,a7), (as,as) belong to Yu, where 9,:9;,9;," .0,
are 2.0578, 1.0219, -0.1679, -0.7189, 1.0219, 0.1801,
-0.7189 and -1.0758, respectively. These sixteen
desired channel states for channel 4 are summar-
ized in [19]. The coefficients of this channel are
symmetric, which means the channel 4 has a linear
phase characteristic. In this case, the number of
observed channel output states becomes six in—
stead of eight because az and as, and as and a7
always have the same values, 1.0219 and -0.7189
for this channel, respectively. However, in our sim-
ulations, each of all eight channel output states,
a,,a,,a;, -, are searched for and evaluated for
more general cases.

In the experiments, 10 independent simulations
for each of three channels with five different noise
levels (SNR=0, 2.5, 5, 7.5, and 10dB) were per—
formed with 1,000 randomly generated transmitted
symbols (L=1000). Afterwards, the obtained results
were averaged. The MFCM and the proposed
CFCM have been implemented in a batch mode to
facilitate comparative analysis. In addition, both al-
gorithms are evaluated with the use of same pa-
rameters shown in Table 2, and these are fixed for
all experiments. The choice of the specific parame-—
ter values is not critical to the performance of
MFCM as well as the proposed CFCM. The fitness
function described by (11) is utilized in both
algorithms. With this regard, the normalized root
mean squared errors (NRMSE) is determined in

the form

NRMSE-= ”a” 2”“ (19)

where a is the data set of optimal channel output

states, @; is the data set of estimated channel out-
put states in the i 51mulat10n, and N is the total
number of independent simulations (N=10).
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Table 2. Parameters used in both MFCM and CFCM

algorithms
Maximum number of iteration 100
Threshold for FF variation 107
Exponent for the partition matrix U 2
Random initial channel output states | [-0.5 0.5]

The values of NRMSEs after 10 independent
simulations for each of four channels are averaged
and illustrated in Fig. 5. The proposed CFCM
comes with lower NRMSE for all four channels,
and the performance differences are more severe
in higher noise levels. As shown in Fig. 6, with
a low SNR, the received patterns are widely dis-
tributed and the values of conditional constraint for
each of them are quite different depending on their

distances to the estimated centers. The patterns,

NRMSE for channel 1
025 T T T

i Proposed CFCM. -ty
02& MFCM — -8 — 4

NRMSE
It

01g

st \f‘«\\_s 4

SNR
(a) for channel 1

NRMSE for channel 3

0
03] Proposed CFCM. —6—— |
\ MFCM — -2 —
nasb N ]
N
W 02f N ]
AN
2 pask \3\
N
“ “
01 AN ~ B
. ~
RS
—— e
oos| e——toog. i
e
|
0 . . N ‘
o 1 2 3 4 5 & 7 8 8 10

SHNR
(¢) for channel 3

which are more distant from their centers, have
lower conditional constraints and are less weighted
on the clustering procedure. It helps to increase the
search accuracy. However, with a high SNR, most
of the received patterns are densely located near
the desired channel states and the patterns even
with low conditional constraints are not far from
their centers as much as they are in the case of
low values of the SNR. It means that the condi-
tional constraint f; does not much affect the clus-
tering procedure. This is why the proposed CFCM
is highly effective to find the optimal channel states
when the received patterns are heavily corrupted
by noise. A sample of 1,000 received symbols under
0dB SNR for channel 4 and its desired channel
states constructed from the estimated channel out-
put states by the MFCM and the proposed CFCM

NRMSE for channel 2

N, Proposed CFCM. g
025- N 1
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\\
0.2t N\ 1
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AR SN N 4
g S =
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Fig. 5. NRMSE of the MFCM and the proposed CFCM.
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received patterns under 0 dB SNR

3 —s =

i
e B0 Rah

y(k-1)

received patterns under 0 dB SNR

yle-1)
o

(a) received patterns under 0 dB SNR

received patterns under 10 dB SNR

y(k)
(b) patterns in (a) displayed by f¢ :
1(black) <> O(white):graycolor

received patterns under 10 dB SNR

.
.
b ST

(c) received patterns under 10 dB SNR

¥y
(d) patterns in (c) displayed by /% :
1(black) € O(white):graycolor

Fig. 8. Received patterns displayed by the conditional constraint J& under high and low SNRs for channel
3 (including optimal positive(C]) and negative(A) states).

are illustrated in Fig. 7.

In addition, the search times of the two algo-
rithms are included in Table 3. Both algorithms use
their fast searching procedures, which means the
for-loop in the pseudo-code is skipped if the se-
lected index_j has not been changed during the last
5 epochs. The overall search time by the proposed
CFCM is slightly slower because of calculation
time for the conditional constraint. However, their
difference is not significant where the proposed
CFCM provides much better performance in terms
of NRMSE. Additionally, some of search times for
the CFCM (in channel 4), especially with low
SNRs, are faster, and it is caused by the conditional

constraint which reduces the number of con-
vergence epochs in heavy noise circumstances.
Finally, the bit error rates (BER) when using the
Bayesian equalizer is investigated and shown in
Table 4. It becomes apparent that the BER with
the estimated channel output states realized by the
proposed CFCM is close enough to the one with
the optimal output states for all four channels.
However, especially for low SNRs, the perform—
ance of the proposed CFCM does not dominate in
terms of BER as much as it does in terms of
NRMSE. It is resulted from the fact that the

Bayesian decision function shown in (8) is affected

by heavy noise (high value of noise variance ¢ ez )
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estimated channel states by MFCM and CFCM

+ optimasl chanel states

¢ by proposed CFCM
2F O by MFCM

&

o
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(b) optimal and estimated channel states

Fig. 7. A sample of received symbols under 0dB SNR for channel 4 and its sixteen desired channel states
estimated by the MFCM and the proposed CFCM.

even though the desired channel states are esti-

mated well with high accuracy by the proposed
CFCM. For further improvement of BER, the deci-

Table 3. The averaged search time ( in sec) for

sion function (or mechanism) of the equalizer

should be investigated in near future.

Table 4. Averaged BER(%) (no. of errors/no. of
transmitted symbols)

MFCM and proposed CFCM (Matlab 7.0 . with optimal Proposed
run on Intel core 2) Channel SNR states MFCM CFCM
Channel SNR MFCM Pg?g;zd 0.0 dB 17.06 17.46 17.39
25 dB 1251 12.91 1277
0.0 dB 0.0797 .
0 0.0875 Channel 1| 5.0 dB 8.27 8.51 8.35
25 dB 0.0734 0.0813
. 75 dB 4,02 414 411
Channel 1 | 5.0 dB 0.0734 0.0734
75 dB 0.0688 0.0719 10 dB L43 L4 Lad
10 dB 0.0594 0.0719 0.0 dB 19.12 20.35 20.21
0.0 dB 0.0828 0.0859 25 dB 15.18 15.47 15.39
25 dB 0.0766 0.0766 Channel 2| 5.0 dB 11.08 11.34 11.11
Channel 2 | 50 dB 0.0609 0.0734 75 dB 6.24 6.30 6.27
75 dB 0.0641 0.0641 10 dB 2716 2.81 2.83
10 dB 0.0594 0.0641 0.0 dB 18.77 19.51 19.38
0.0 dB | 00859 0.0922 25 dB 13.13 1331 | 1313
Channel 3 25 dB 0.0719 0.0875 Channel 3 50 dB 8.99 909 899
0 dB . .
50 d 0.0688 0.0734 75 dB 453 4.53 4.46
75 dB 0.0625 0.0719
10 dB 1.45 1.49 1.48
10 dB 0.0609 0.0656
0.0 dB 48031 49969 0.0 dB 21.98 25.90 23.33
95 dB 97406 79047 25 dB 17.36 2391 21.33
75dB | 47141 3.0375 75 dB 831 9.72 8.86
10 dB 3.0484 3.25631 10 dB 4.93 5.90 494
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6. CONCLUSIONS

A modification of the CFCM aimed at the esti-
mation of desired channel states of an unknown
digital communication channel is provided for blind
equalization, and successfully evaluated with both
of linear and nonlinear channels. By taking this
kind of approach, the highly demanding modeling
task of an unknown channel becomes unnecessary
as the construction of the desired channel states
is accomplished directly on the basis of the esti-
mated channel output states. It has been shown
that the proposed CFCM offers better performance
in comparison to the solution provided by the pre-
viously developed algorithm (MFCM). In partic-
ular, because of the conditional constraint, the pro—
posed CFCM can estimate the channel output
states with substantial accuracy and speed even
when the received symbols are significantly cor-
rupted by heavy noise. Therefore, the CFCM can
possibly constitute a search algorithm of optimal
channel states for the various problems of blind
channel equalization. For future works, this algo-
rithm could be evaluated with wider range of com—
munication environments including higher order
channels. Furthermore, as mentioned at the end of
last section, the decision function of Bayesian
equalizer could be investigated for the improve-
ment of BER in low SNRs. The research for more
powerful search algorithms (easier and faster to
compute or implement and more robust to heavy

noise) will also be continued.
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