• Title/Summary/Keyword: Fuzzy c-Means Algorithm

Search Result 286, Processing Time 0.03 seconds

The Enhancement of Learning Time in Fuzzy c-means algorithm (학습시간을 개선한 Fuzzy c-means 알고리즘)

  • 김형철;조제황
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.113-116
    • /
    • 2001
  • The conventional K-means algorithm is widely used in vector quantizer design and clustering analysis. Recently modified K-means algorithm has been proposed where the codevector updating step is as fallows: new codevector = current codevector + scale factor (new centroid - current codevector). This algorithm uses a fixed value for the scale factor. In this paper, we propose a new algorithm for the enhancement of learning time in fuzzy c-means a1gorithm. Experimental results show that the proposed method produces codebooks about 5 to 6 times faster than the conventional K-means algorithm with almost the same Performance.

  • PDF

A Density Estimation based Fuzzy C-means Algorithm for Image Segmentation (영상분할을 위한 밀도추정 바탕의 Fuzzy C-means 알고리즘)

  • Ko, Jeong-Won;Choi, Byung-In;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.196-201
    • /
    • 2007
  • The Fuzzy E-means (FCM) algorithm is a widely used clustering method that incorporates probabilitic memberships. Due to these memberships, it can be sensitive to noise data. In this paper, we propose a new fuzzy C-means clustering algorithm by incorporating the Parzen Window method to include density information of the data. Several experimental results show that our proposed density-based FCM algorithm outperforms conventional FCM especially for data with noise and it is not sensitive to initial cluster centers.

Fuzzy c-Means Clustering Algorithm with Pseudo Mahalanobis Distances

  • ICHIHASHI, Hidetomo;OHUE, Masayuki;MIYOSHI, Tetsuya
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.148-152
    • /
    • 1998
  • Gustafson and Kessel proposed a modified fuzzy c-Means algorithm based of the Mahalanobis distance. Though the algorithm appears more natural through the use of a fuzzy covariance matrix, it needs to calculate determinants and inverses of the c-fuzzy scatter matrices. This paper proposes a fuzzy clustering algorithm using pseudo mahalanobis distance, which is more easy to use and flexible than the Gustafson and Kessel's fuzzy c-Means.

  • PDF

Cluster Merging Using Enhanced Density based Fuzzy C-Means Clustering Algorithm (개선된 밀도 기반의 퍼지 C-Means 알고리즘을 이용한 클러스터 합병)

  • Han, Jin-Woo;Jun, Sung-Hae;Oh, Kyung-Whan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.517-524
    • /
    • 2004
  • The fuzzy set theory has been wide used in clustering of machine learning with data mining since fuzzy theory has been introduced in 1960s. In particular, fuzzy C-means algorithm is a popular fuzzy clustering algorithm up to date. An element is assigned to any cluster with each membership value using fuzzy C-means algorithm. This algorithm is affected from the location of initial cluster center and the proper cluster size like a general clustering algorithm as K-means algorithm. This setting up for initial clustering is subjective. So, we get improper results according to circumstances. In this paper, we propose a cluster merging using enhanced density based fuzzy C-means clustering algorithm for solving this problem. Our algorithm determines initial cluster size and center using the properties of training data. Proposed algorithm uses grid for deciding initial cluster center and size. For experiments, objective machine learning data are used for performance comparison between our algorithm and others.

The Effect of Variable Learning Weights in Fuzzy c-means algorithm (Fuzzy c-means 알고리즘에서의 가변학습 가중치의 효과)

  • 박소희;조제황
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.109-112
    • /
    • 2001
  • 기존의 K-means 알고리즘은 학습벡터가 단일군집에 할당되는 방법이 crisp 이므로 다른 군집에 할당될 확률을 무시하게 된다. 따라서 군집화 작업과 관련하여 반복적인 코드북 설계 과정에서 각 학습벡터를 다중 군집으로 할당하는 Fuzzy c-means를 사용한다. 또한 Fuzzy c-means 알고리즘의 학습과정에서 구해지는 각 클래스 의 프로토타입에 가중치를 곱하여 다음 학습의 프로토타입으로 사용함으로써 Fuzzy c-means 알고리즘 적용 결과 얻어지는 코트북의 성능을 기존 알고리즘과 비교하여 개선된 Fuzzy c-means 알고리즘을 찾기 위한 근거를 마련한다.

  • PDF

A Kernel based Possibilistic Approach for Clustering and Image Segmentation (클러스터링 및 영상 분할을 위한 커널 기반의 Possibilistic 접근 방법)

  • Choi, Kil-Soo;Choi, Byung-In;Rhee, Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.889-894
    • /
    • 2004
  • The fuzzy kernel c-means (FKCM) algorithm, which uses a kernel function, can obtain more desirable clustering results than fuzzy c-means (FCM) for not only spherical data but also non-spherical data. However, it can be sensitive to noise as in the FCM algorithm. In this paper, a kernel function is applied to the possibilistic c-means (PCM) algorithm and is shown to be robust for data with additive noise. Several experimental results show that the proposed kernel possibilistic c-means (KPCM) algorithm out performs the FKCM algorithm for general data with additive noise.

The Classification of Tool Wear States Using Pattern Recognition Technique (패턴인식기법을 이용한 공구마멸상태의 분류)

  • Lee, Jong-Hang;Lee, Sang-Jo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1783-1793
    • /
    • 1993
  • Pattern recognition technique using fuzzy c-means algorithm and multilayer perceptron was applied to classify tool wear states in turning. The tool wear states were categorized into the three regions 'Initial', 'Normal', 'Severe' wear. The root mean square(RMS) value of acoustic emission(AE) and current signal was used for the classification of tool wear states. The simulation results showed that a fuzzy c-means algorithm was better than the conventional pattern recognition techniques for classifying ambiguous informations. And normalized RMS signal can provide good results for classifying tool wear. In addition, a fuzzy c-means algorithm(success rate for tool wear classification : 87%) is more efficient than the multilayer perceptron(success rate for tool wear classification : 70%).

The Design of Fuzzy Controller by Means of Genetic Optimization and Estimation Algorithms

  • Oh, Sung-Kwun;Rho, Seok-Beom
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.17-26
    • /
    • 2002
  • In this paper, a new design methodology of the fuzzy controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors. The design procedure is based on evolutionary computing (more specifically, a genetic algorithm) and estimation algorithm to adjust and estimate scaling factors respectively. The tuning of the soiling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as HCM (Hard C-Means) and Neuro-Fuzzy model[7]. The validity and effectiveness of the proposed estimation algorithm for the fuzzy controller are demonstrated by the inverted pendulum system.

  • PDF

Developments of Parking Control System Using Color Information and Fuzzy C-menas Algorithm (컬러 정보와 퍼지 C-means 알고리즘을 이용한 주차관리시스템 개발)

  • 김광백;윤홍원;노영욱
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.87-101
    • /
    • 2002
  • In this paper, we proposes the car plate recognition and describe the parking control system using the proposed car plate recognition algorithm. The car plate recognition system using color information and fuzzy c-means algorithm consists of the extraction part of a car plate from a car image and the recognition part of characters in the extracted car plate. This paper eliminates green noise from car image using the mode smoothing and extract plate region using green and white information of RGB color. The codes of extracted plate region is extracted by histogram based approach method and is recognized by fuzzy c-means algorithm. For experimental, we tested 80 car images. We shows that the proposed extraction method is better than that from the color information of RGB and HSI, respectively. So, we can know that the proposed car plate recognition method using fuzzy c-means algorithm was very efficient. We develop the parking control system using the proposed car plate recognition method, which showed performance improvement by the experimental results.

  • PDF

A Novel Image Segmentation Method Based on Improved Intuitionistic Fuzzy C-Means Clustering Algorithm

  • Kong, Jun;Hou, Jian;Jiang, Min;Sun, Jinhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3121-3143
    • /
    • 2019
  • Segmentation plays an important role in the field of image processing and computer vision. Intuitionistic fuzzy C-means (IFCM) clustering algorithm emerged as an effective technique for image segmentation in recent years. However, standard fuzzy C-means (FCM) and IFCM algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial relationship of pixels. In view of these shortcomings, an improved algorithm based on IFCM is proposed in this paper. Firstly, we propose a modified non-membership function to generate intuitionistic fuzzy set and a method of determining initial clustering centers based on grayscale features, they highlight the effect of uncertainty in intuitionistic fuzzy set and improve the robustness to noise. Secondly, an improved nonlinear kernel function is proposed to map data into kernel space to measure the distance between data and the cluster centers more accurately. Thirdly, the local spatial-gray information measure is introduced, which considers membership degree, gray features and spatial position information at the same time. Finally, we propose a new measure of intuitionistic fuzzy entropy, it takes into account fuzziness and intuition of intuitionistic fuzzy set. The experimental results show that compared with other IFCM based algorithms, the proposed algorithm has better segmentation and clustering performance.