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Abstract

Gustafson and Kessel proposed a modified fuzzy c-Means algorithm based on the Mahalanobis distance.
Though the algorithm appears more natural through the use of a fuzzy covariance matrix, it needs to
calculate determinants and inverses of the c-fuzzy scatter matrices. This paper proposes a fuzzy clustering
algorithm using pseudo Mahalanobis distances, which is more easy to use and flexible than the Gustafson

and Kesscl's fuzzy c-Means.
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1. Introduction

The first fuzzy clustering algorithm was devel-
oped by Ruspini {1]. Fuzzy ISODATA [2] and its
extension Fuzzy c-Means [3] are the popular fuzzy
clustering algorithm by the distance-based objective
function methods (the within-group sum-of-squared-
error (WGSS) criterion).

Other approaches are driven by optimization of
a generalized fuzzy c-prototypes functional defined
by a measure of similarity (or dissimilarity) between
pattern (datum) and prototype. In Bezdek et al.[4, 5]
the fitting prototypes are either straight lines and the
measure is the orthogonal distance, or more gen-
erally, prototypes that are convex combinations of
points and lines.

Fuzzy clustering, Fuzzy c-Means, linear clusters

pseudo Mahalanobis distances

Let us consider a problem to partition J patterns
into C clusters. Let J dimensional feature vector of
jth pattern be

o (1)

T; = (1;1,%2, ", Z;1) jg=1,

Uc; iS the membership of pattern j to cluster c.

C::1,'--,C (2)
is a vector of cluster center. A, = (agk) , Be =
(beix) and D, = (dsy) are I x I symmetric matrices
which define the pscudo Mahalanobis distance.

U, = (vclvvc%"'avc[)

The switching regression models i Qe11 Q2 QAe1g
[6] partitions the patterns and simultaneously pro- Qe21  Qe22 Qeor
vides estimates of the parameters of linear functions, A = 3)
which define the best-fit regression models. °
The Mahalanobis distance between z,, @, € R’
defined by the weighted inner product :cTAa:J- is an Qer1 Qel2 QelT
important tool for pattern classification. Gustafson i
and Kessel [7] proposed a modified fuzzy c-Means
algorithm based on the Mahalanobis distance, which [ by O ... 0
appears more natural through the use of a fuzzy 0 by ... O
covariance matrix. The local variation of the norm
L . . . B, = (4)
may identify clusters of various geometric shapes in-
cluding linear clusters. .
Though the algorithm is much more flexible than 0 0 berr
the conventional fuzzy c-Means with the norm T i
T, it needs to calculate determinants and inverses of )
the c-fuzry scatter matrices whose regularity is not dey derz derr
guaranteed, and thus it is computationally intractable. de21 de2o dear
This paper proposes a modified fuzzy ¢-Means clus- D. = (5)
tering algorithm using pseudo Mahalanobis distances ¢
with maximizing entropy. . .
| denn derz derr

2. Convenient clustering algorithm with
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where aqx > 0,be; > 0 and deix < 0 for all ¢,i.k.
The pseudo Mahalanobis distance is defined by

a matrix E, = (eqk)

ecik = (1 — bix)acix + dikbeix + (1 — dik)dcix

(6)

where 6, is a Kronecker's symbol

5ik={

Let the objective function (Lagrange function) be

1 (i=k)
0 (i#k)

- 1k aak

c I
-3 (33 )
c=1 1=1 k=1
c T
—Z/\i’ (me - 1)
c=1 =1
c I
-y ON (szak + 1)
c=1 1=1 k=1
c (1 I
+Xo Z {Z Z(acik log acik
c=1 i=1 k=1

I
+(—deix) log(—deix)) + Z beii log bcii}

i=1

J C
I=1 c=1

J C
+70 Z Z Uej 108 U

=1 c=1

()

The first term of L represents the sum of pseudo
Mahalanobis distances defined by the matrix E..
Qcik's , beir's and d.i's are decision variables. The
second and third terms represent the constraints that
the components of matrix A. and B, sum to one
respectively, and A%'s and A%'s are the Lagrange mul-
tipliers. The fourth term represents the constraint that
the components of D, sum to minus one. \%'s are
the Lagrange multipliers. The fifth term is to make
Qeik > 0, bep > 0 and dgx < 0 and by the sec-
ond to fourth terms, ack,beii, ~deix € (0,1). The
sixth term represents a constraint that membership
Uc; Sum to one and 7;'s are the Lagrange multipli-
ers. The seventh term is an entropy term introduced

by Miyamoto and Mukaidono [8] to obtain a fuzzy
partition. The larger 79(> 0) is the more fuzzy clus-
ters are obtained.

From the necessary condition of the optimality
of L

oL

Oacik

=0 (8)

Since e = Qek; We have

J
Z(l — ik )i (Tji — Vei) (Tjk — Ve )
=1

=A%+ Ag(logac +1) =0 (9)
5L 11
a)‘a:ZZadk——l—O (10)

By substituting Eq.(9) into Eq.(10), A% is obtained.
Then again substitute A% into Eq.(9) which yields

exp(F
acik, — - Ip( C‘Lk) (11)
Z Z exP(chn)
m=1n=1
where
Feomn = '—‘_Z(l Omn ucj
(Ijm - vcm)(xjn - Ucn) (12)
By the similar manner we have
Gii
beii = _;M (13)
exp(Gemm)
m=1
where
cmrn. = Z5mnuc;) Tjm — cm)2 (14)
and
- H
doit = ———RHeir) (15)
> Zexp(Hcmn
m=1n=1
where
J
1emn = Z 6mn)ucj
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(xjm - Ucm)(xjn - vcn)
From

oL
avci =0

we have

I
> {1 = 8 aci + ixbeik + (1 = bmn)doin}

k=1

(18)

J J
§ Uej Tjk — Vek E Uey |} = 0
j=1 =1
Thus,
J
E Uej Tk
=1
J
D e
Jj=1
And, from

oL
Bucj

(19)

Vek =

=0

(20)

we have

X ch

> exp(Ry;)

q=1

where

I I

1
Ry = - ZZ{(l — ik )ik + Oirbeik

=1 k=1

+(1 = 8ik)deir Hzji — ver)(Tjk — Ver) (22)

The clustering algorithm is the iteration through
necessary conditions Egs.(11), (13), (15), (19),and
20n.

step 1 : Fix C, 2<C < J. fix A\g and 7g.
Initialize uc;,j=1,---,J,c=1,---,C
c
such that Zucj =1.
c=1
step 2 : Calculate the fuzzy cluster centers v,
with Eq.(19).

step 3 : Calculate A, with Eq.(11) , B, with
Eq.(13) and D, with Eq.(15).
step 4 : Update u.; with Eq.(21).
step 5 : If
lue; —uGtP| < e

is satisficd then stop. Otherwise,
return to step 2.

3. Numerical example

The artificial data [7] shown in Fig.l consists
of J=20 points(patterns) in R%. These data form
two visually apparent linear clusters in the shape of
a cross; the coordinates of each point are listed in
column 1 of Table 1. The fuzzy 2-partition attained
in 10 iterations with £ = 0.00001 is exhibited as
column 2 of Table 1 and in Fig.l where X and
O denote the data of cluster 1 and 2 respectively.
Evidently the proposed algorithm successfully label
all 20 data points correctly (although the membership
of points 6 and 18 at the center of the cross are
fortuitous). The actual hard(sample) covariance ma-
trices (M, , M), fuzzy covariance matrices (N .
N3) by Gustafson and Kessel and our (E7', E;")
with AO = 010, T = 0.05 are

|

36.33 0.8
} N2 = [ 0.88  0.05 }

0.13 1.50
L.50 24.44

33.92

~0.03
M, = [ ~0.03 ]

0.07

0.06 0.72
Ny = { 0.72 25.65

Bl - 3.46 3245 E-l = 1407.04 23.94
V703245 42925 |02 T | 2394 141
respectively.  The all diagonal entries reflect the

predominantly linear structure of cluster 1 and 2,
cluster 1 having large variance along the z,-axis,
while cluster 2 has large variance along the x-axis.

The fuzzy partition of rotated data at an angle
of 45° attained in 13 iterations with ¢ = 0.00001
is exhibited as column 3 of Table 1. The center
of rotation is (0,0). The matrices (E;', E;') with
Ao = 0.10, 79 = 0.05 are

o [1072 672 Loy
E, “[ 6.72 5.75 }’Ez ’[

16.37
—14.26

—14.26
14.29

respectively. Fig.2 shows the resultant clusters. The
linear structure is detected even in the rotated linear
clusters.

We apply artificial data consists of J=60 points
in R*, which forms three linear clusters. Fig.3 shows
the result where crisply clustered data are depicted
by X,0O and A on the z; — z3 plane.

4. Concluding remarks

We have proposed the convenient fuzzy clus-
tering algorithm using pseudo Mahalanobis distances
and maximizing entropy approach. Since discrimi-
nant analysis with Mahalanobis distances has been
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efficiently applied to various pattern recognition prob-
lems, our future works includes simultancous deter-
mination of a data partition and classification by the
proposed algorithm.

Table 1 Obtained fuzzy clusters Y L e S -
Terminal memberships °
Data x; in fuzzy cluster 1
Example 1 | Example 2 ’r e B
(-9.75,-0.15) 0.007 0.011 ® x
(-6.44,0.34) 0.102 0.115 %
(-4.69,-0.30) 0.234 0.248 or X i}
(-2.04,0.37) 0.445 0.441 X
(-1.24,0.45) 0.484 0.478 x LN
(0.33,-0.08) 0.502 0.502 St xX ® 7
(5.04,-0.21) 0.241 0.279
(5.86,-0.25) 0.171 0.212
(7.54,0.16) 0.068 0.100 aor L] X
(7.67,0.24) 0.063 0.094 10 E 0 5 10 A,
(('(())133’_’7810;)) 82;3 8;3? Fig. 2 Rotated patterns
(-0.37,-5.18) 0.745 0.725
(0.03,-3.33) 0.596 0.587
(0.35,-2.63) 0.554 0.548
(0.23.-2.68) 0.557 0.551
(-0.05,-2.00) 0.527 0.524
(0.41,0.37) 0.510 0.508
(0.69,4.75) 0.800 0.773
(0.74,8.87) 0.988 0.980 X;
1 T v T T 1
LY
o5l A x -
X AN
2 .‘ S A 1
i L 1 1
10 ! -1 ok x \\‘ -
X x § .
- .‘ A
T x ] 05k ® .
ote ©® g X g0 )
1 0.5 0 0.5 15
! ’i( 'xl
5+ X ~1
x Fig. 3 Three linear clusters in R3
x
10 L_1 1 1 ] L]
10 s 0 5 i X,

Fig. 1 Gustafson’s cross
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