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Abstract 
 

Segmentation plays an important role in the field of image processing and computer vision. 
Intuitionistic fuzzy C-means (IFCM) clustering algorithm emerged as an effective technique 
for image segmentation in recent years. However, standard fuzzy C-means (FCM) and IFCM 
algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial 
relationship of pixels. In view of these shortcomings, an improved algorithm based on IFCM 
is proposed in this paper. Firstly, we propose a modified non-membership function to 
generate intuitionistic fuzzy set and a method of determining initial clustering centers based 
on grayscale features, they highlight the effect of uncertainty in intuitionistic fuzzy set and 
improve the robustness to noise. Secondly, an improved nonlinear kernel function is 
proposed to map data into kernel space to measure the distance between data and the cluster 
centers more accurately. Thirdly, the local spatial-gray information measure is introduced, 
which considers membership degree, gray features and spatial position information at the 
same time. Finally, we propose a new measure of intuitionistic fuzzy entropy, it takes into 
account fuzziness and intuition of intuitionistic fuzzy set. The experimental results show that 
compared with other IFCM based algorithms, the proposed algorithm has better 
segmentation and clustering performance. 
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1. Introduction 

Image information is one of the most important information for human beings to know and 
communicate with the outside world. There are certain regions with specific similar 
properties in an image, which are called object areas. The vast majority of the information in 
an image is often contained in object areas. Image segmentation is a basic and crucial aspect 
of image analysis and processing in the field of image video and computer vision, which is 
essentially a process of dividing an image into multiple non-overlapping sub-regions based 
on some characteristics of pixels. Despite substantial progress in recent years, image 
segmentation still remains to be a challenging problem due to several factors which both 
from the background and the object areas [1-3].  

Clustering methods are considered to be an efficient technique to deal with the similarity 
and uncertainty in an image, which group pixels into different clusters according to some 
criteria and features. Over the past decades, various clustering based methods such as 
k-means [4], fuzzy clustering [5], k-mediods [6] and scalable spectral clustering [7] have 
been proposed. Among these, fuzzy C-means (FCM) is a most extensively studied algorithm 
based on fuzzy theory, which allows an element to belong to multiple classes with varying 
memberships. Intuitionistic fuzzy C-means (IFCM) algorithm, as a successful extension and 
variant of FCM, has attracted extensive attention and has been widely used in many fields 
such as image processing and pattern recognition [8]. However, standard FCM and IFCM 
algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial 
relationship of pixels, leading to imprecise clustering results.  

In this work, we have considered the problems mentioned above, and the main 
contributions of our work can be summed up as follows. First, we propose a modified 
non-membership function to generate intuitionistic fuzzy set, which highlights the effect of 
uncertainty and makes good use of image information. A method of determining initial 
clustering centers based on pixel characteristics is also proposed, aiming at suppressing the 
noise and clustering more accurately. Second, considering some data might be inseparable in 
low dimensional space, we propose an improved nonlinear function to map data into high 
dimensional kernel space to measure the distance. Third, to get a comprehensive measure of 
various factors, we introduce the local spatial-gray information, combining membership 
degree, gray features and spatial position information. Finally, we improve standard 
intuitionistic fuzzy entropy in the objective function, which takes into account fuzziness, 
intuition and uncertainty of intuitionistic fuzzy set. The flowchart of our work is shown in 
Fig. 1. Compared with existing algorithms, the proposed algorithm not only considers 
membership degree, non-membership degree and spatial information, but it also takes into 
account the effect of intuition, uncertainty and kernel space distance measure. To better 
verify the performance of our segmentation algorithm, we have performed comprehensive 
evaluations on different images and datasets. Our approach improves the baseline IFCM both 
in the aspect of segmentation and clustering.  
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Fig. 1. Flowchart of our segmentation algorithm 

 
The remainder of this paper is arranged as follows. Section 2 introduces the correlation 

theory of fuzzy C-means clustering algorithm and intuitionistic fuzzy set. In Section 3, we 
minutely introduce our method from five main parts. Comparison experiments and 
comparative analysis are given in Section 4. Finally, Section 5 summarizes the paper. 

 

2. Related Work 

2.1 Current Segmentation Algorithms 
Over last decades scholars around the world have proposed a variety of image segmentation 
algorithms by utilizing different schemes [9-12] including global thresholding method, edge 
detection method, region based method, clustering based method and so on [13]. Generally 
speaking, most of these representative segmentation algorithms are global thresholding based, 
where gray level thresholding is always efficient and easy to calculate. But they are only 
suitable for images with significant difference in gray values. Besides, the existence of noise 
and many other interferences also raises difficulties in segmenting image precisely. Thus 
image segmentation is one of the most difficult tasks in the field of computer vision. To this 
day, it is still a persistent research hotspot. 
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In recent years, image segmentation algorithm based on FCM is widely used as it can 

iterate to obtain the final results adaptively in the case of unsupervised, which works well for 
noiseless images. But FCM is often sensitive to noise and initial clustering centers, so that it 
might be difficult to yield satisfactory segmentation effect by utilizing FCM directly. On the 
basis of fuzzy set theory, Atanassov first proposed the concept of intuitionistic fuzzy set 
(IFS), which takes into account the function of membership degree, non-membership degree 
and hesitation at the same time [14]. Over last decade, many scholars have devoted 
themselves to the study of intuitionistic fuzzy set, which has been widely used in various 
fields and achieved great results. Charia et al. [15] proposed an edge detection method based 
on intuitionistic fuzzy sets and fuzzy C-means (IFCM) clustering algorithm, which was 
applied to the detection of medical images incorporating local information with good 
segmentation performance. On the basis of intuitionistic fuzzy sets, Kaur et al. [16] proposed 
the RBF kernel intuitionistic fuzzy C-means algorithm (KIFCM), where the kernel metric 
matrix was used instead of the original Euclidean norm metric. Ansari et al. [17] proposed a 
new measure of intuitionistic fuzzy divergence and intuitionistic fuzzy entropy, and proved 
its effectiveness in edge detection. An image segmentation algorithm combines intuitionistic 
fuzzy theory with spatial information (IFCMS) was proposed by Tripathy et al. [18], which 
is insensitive to noise to some extent and performs well on segmentation. Another 
representative algorithm (IIFCM) was proposed by Verma et al., which introduces a factor 
considers both local gray-level and spatial information in IFCM, with great robustness to 
noise and well-preserved image information [19]. After this, Zhao et al. [8] proposed an 
IFCM based multi-objective optimized segmentation algorithm with multiple image spatial 
information (MOEIFC-MSI), it achieves high segmentation accuracy and is robust to noise.  

 

2.2 Standard FCM Algorithm 
For 𝑁𝑁 initial data 𝑋𝑋 = {𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑁𝑁}, if they are expected to be divided into 𝐶𝐶 fuzzy sets 
𝐹𝐹 = (𝐹𝐹1,𝐹𝐹2, … ,𝐹𝐹𝐶𝐶), then the objective function of the FCM algorithm can be expressed as: 
 

𝐽𝐽𝐹𝐹𝐶𝐶𝐹𝐹(𝑈𝑈,𝑉𝑉) = ∑ ∑ 𝜇𝜇𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑𝑖𝑖𝑖𝑖2 (𝑥𝑥𝑖𝑖 , 𝑣𝑣𝑖𝑖)𝐶𝐶
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1                   (1) 

 
And the constraint conditions are:  
 

∑ 𝜇𝜇𝑖𝑖𝑖𝑖 = 1,   ∀𝑖𝑖𝐶𝐶
𝑖𝑖=1                           (2) 

 
0 < ∑ 𝜇𝜇𝑖𝑖𝑖𝑖𝑁𝑁

𝑖𝑖=1 < 𝑛𝑛, ∀𝑗𝑗                         (3) 
 

Where 𝐶𝐶 denotes the number of the clusters, which is a preset parameter, 𝜇𝜇𝑖𝑖𝑖𝑖 is the 
membership degree of the data 𝑥𝑥𝑖𝑖 to the fuzzy cluster 𝐹𝐹𝑖𝑖, 𝑣𝑣𝑖𝑖 is the clustering center of the 
fuzzy cluster 𝐹𝐹𝑖𝑖 , 𝑑𝑑𝑖𝑖𝑖𝑖  denotes the Euclidean distance measure between data 𝑥𝑥𝑖𝑖  and 
clustering center 𝑣𝑣𝑖𝑖, 𝑚𝑚 is a constant, usually takes 2, 𝑈𝑈 is the membership matrix and 𝑉𝑉 
is the clustering center matrix.  

The implementation of FCM algorithm is the process of minimizing the objective function 
to seek the optimal cluster center and the membership degree by iteration. According to the 
constraint conditions Eq. (2) and Eq. (3), the Lagrange function is utilized to obtain the 
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partial derivative of each variable, and we make the partial derivative be 0, then the iterative 
formulas of fuzzy membership degree and clustering center can be obtained as follows: 

 

𝜇𝜇𝑖𝑖𝑖𝑖 = 1

∑ �
𝑑𝑑𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖,𝑣𝑣𝑖𝑖)
𝑑𝑑𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖,𝑣𝑣𝑖𝑖)�

2
𝑚𝑚−1𝐶𝐶

𝑖𝑖=1

    𝑖𝑖 = 1,2, … ,𝑁𝑁
𝑗𝑗 = 1,2, … ,𝐶𝐶                   (4) 

 

𝑣𝑣𝑖𝑖 =
∑ 𝜇𝜇𝑖𝑖𝑖𝑖

𝑚𝑚𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1

∑ 𝜇𝜇𝑖𝑖𝑖𝑖
𝑚𝑚𝑁𝑁

𝑖𝑖=1
    𝑖𝑖 = 1,2, … ,𝑁𝑁
𝑗𝑗 = 1,2, … ,𝐶𝐶                      (5) 

 
The FCM algorithm initializes the cluster center first, and then iterates through Eq. (4) and 

Eq. (5) until the iteration stops. There are two stop criteria in standard FCM: the maximum 
number of iterations 𝑀𝑀 and the accuracy of objective function 𝑒𝑒. Once the number of 
iterations reaches the maximum, or the error of objective function is less than the accuracy, 
the iteration stops. According to the obtained membership degree matrix, the cluster 
corresponding to the maximum membership value of the sample is the result of clustering. In 
order to take a more comprehensive understanding of FCM, we give the outline of standard 
FCM algorithm as Algorithm 1. 

 
Algorithm 1 
Inputs: 

Image set 𝑥𝑥𝑖𝑖(𝑖𝑖 = 1,2, … ,𝑛𝑛), the number of clusters 𝑐𝑐. 
Output: 

FCM clustering and segmentation results. 
1:  Parameter initialization. 
2:  Set the number of iterations 𝑡𝑡 = 1. 
3:  if 𝑡𝑡 < 𝑀𝑀 then 
4:  Iterate membership degree 𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖) according to Eq. (4). 
5:  Iterate clustering center 𝑣𝑣𝑖𝑖 according to Eq. (5). 
6:     if |𝐽𝐽(𝑡𝑡) −  𝐽𝐽(𝑡𝑡 +  1)| < 𝑒𝑒 then 
7:     Go to step 13. 
8:     else 
9:      𝑡𝑡 = 𝑡𝑡 + 1. 
10:    Go to step 3, end if.  
11:  else 
12:  Go to step 13, end if. 
13:  The maximum membership degree is the clustering result. 

 

2.3 Intuitionistic Fuzzy Set 
Intuitionistic fuzzy set is a successful extension and development of standard fuzzy set. A 
fuzzy set can be defined as: 
 

𝐴𝐴 = {𝑥𝑥, 𝜇𝜇𝐴𝐴(𝑥𝑥)|𝑥𝑥 ∈ 𝑋𝑋}                        (6) 
 

Where 𝑋𝑋 = {𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑁𝑁} is a data set, 𝜇𝜇𝐴𝐴(𝑥𝑥) → [0,1] denotes the membership degree 
for data 𝑥𝑥 belonging to fuzzy set 𝐴𝐴, which breaks through the shackles of the traditional 
binary logic. Then, the non-membership degree can be expressed as 𝑣𝑣𝐴𝐴(𝑥𝑥) = 1 − 𝜇𝜇𝐴𝐴(𝑥𝑥). 
However, in the objective world, the judgment of a thing often not only relies on ‘either this 
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or that’, but it also includes a lot of ‘uncertainty’ information. Therefore, on the basis of 
fuzzy set, an intuitionistic fuzzy set can be represented as: 

 
𝐵𝐵 = {𝑥𝑥, 𝜇𝜇𝐵𝐵(𝑥𝑥), 𝑣𝑣𝐵𝐵(𝑥𝑥)|𝑥𝑥 ∈ 𝑋𝑋}                     (7) 

 
Where 𝜇𝜇𝐵𝐵(𝑥𝑥) → [0,1] and 𝑣𝑣𝐵𝐵(𝑥𝑥) → [0,1] denote the membership and non-membership 

degree for data 𝑥𝑥 belonging to intuitionistic fuzzy set 𝐵𝐵 respectively. While unlike fuzzy 
set, membership and non-membership satisfy the following conditions: 

 
0 ≤ 𝜇𝜇𝐵𝐵(𝑥𝑥) + 𝑣𝑣𝐵𝐵(𝑥𝑥) ≤ 1, ∀𝑥𝑥 ∈ 𝑋𝑋                   (8) 

 
Hesitation degree for data 𝑥𝑥 is defined as: 
 

𝜋𝜋𝐵𝐵(𝑥𝑥) = 1 − 𝜇𝜇𝐵𝐵(𝑥𝑥) − 𝑣𝑣𝐵𝐵(𝑥𝑥)                      (9) 
 

It is a measure of uncertainty of the data. Obviously, 0 ≤ 𝜋𝜋𝐵𝐵(𝑥𝑥) ≤ 1 for each 𝑥𝑥 ∈ 𝑋𝑋. 
Intuitionistic fuzzy set degenerates into ordinary fuzzy set when 𝜋𝜋𝐵𝐵(𝑥𝑥) = 0 . For 
intuitionistic fuzzy set 𝐵𝐵, its membership degree 𝜇𝜇𝐵𝐵(𝑥𝑥), non-membership degree 𝑣𝑣𝐵𝐵(𝑥𝑥) 
and hesitation degree 𝜋𝜋𝐵𝐵(𝑥𝑥) represent the degree of ‘support’, ‘opposition’ and ‘neutrality’ 
of data belonging to 𝐵𝐵 respectively. Therefore, intuitionistic fuzzy set effectively extend the 
representation ability of Zadeh’s standard fuzzy set. 

The non-membership function of intuitionistic fuzzy set is usually generated by Yager’s 
[20, 21] and Sugeno’s [22] negation function, which are: 

 
𝑁𝑁1�𝜇𝜇(𝑥𝑥)� = (1 − 𝜇𝜇(𝑥𝑥)𝛼𝛼)

1
𝛼𝛼, 𝛼𝛼 > 0                   (10) 

 
𝑁𝑁2�𝜇𝜇(𝑥𝑥)� = 1−𝜇𝜇(𝑥𝑥)

1+𝜆𝜆𝜇𝜇(𝑥𝑥) , 𝜆𝜆 > 0                       (11) 
 

Then the intuitionistic fuzzy set can be further expressed as {𝑥𝑥, 𝜇𝜇(𝑥𝑥),𝑁𝑁(𝜇𝜇(𝑥𝑥))|𝑥𝑥 ∈ 𝑋𝑋}. 

3. Proposed Approach 

3.1 The Generation of Intuitionistic Fuzzy Set 
For practical applications, the non-membership function of intuitionistic fuzzy set plays an 
important role in the final results. Generally speaking, different problems should use 
different non-membership functions based on the specific circumstances to get good results. 
In this paper, a new method of generating non-membership function is proposed to improve 
the literature [23], which not only considers the gray characteristics of pixels, but also 
enhances the uncertainty of intuitionistic fuzzy set. 

For a gray image with pixel set 𝑋𝑋 = {𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑁𝑁}, if we would divide pixels into 𝐶𝐶 
categories, its intuitionistic fuzzy set can be expressed as: 

 
𝐴𝐴 = �𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖), 𝑣𝑣𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖),𝜋𝜋𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)�𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋�, 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁, 1 ≤ 𝑗𝑗 ≤ 𝐶𝐶        (12) 
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We propose a new method of generating non-membership degree: 
 

𝑁𝑁(𝜇𝜇(𝑥𝑥𝑖𝑖)) = 1−𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)
1+𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)

(𝑒𝑒𝑥𝑥𝑒𝑒 (−𝜇𝜇𝑖𝑖𝑖𝑖
(𝑥𝑥𝑖𝑖)

𝛼𝛼∙𝜎𝜎
))

1
𝛼𝛼                 (13) 

 
Where 𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖) is the membership function related to gray value, 𝛼𝛼 is a non-membership 

constant which verified in literature [18] with best performance when 𝛼𝛼 = 5, 𝜎𝜎 is the 
standard deviation of membership function 𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖), it is usually between 0.37-0.38.  

Compared with the function in literature [23], the classical Yager’s function [20, 21] and 
Sugeno’s function [22], the non-membership function proposed in this paper has 
significantly better performance. On the one hand, multiplier 1−𝜇𝜇𝑖𝑖𝑖𝑖

(𝑥𝑥𝑖𝑖)
1+𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)

 guarantees the value 

of the non-membership function to be between 0-1, which satisfies the constraints. On the 
other hand, when membership degree is close to 0 or 1, the certainty increases sharply, that is, 
the degree of hesitation becomes very small; when the degree of membership is close to 0.5, 
the value of non-membership is small, that is, the uncertainty increases and the hesitation 
degree is large. Different from existing non-membership functions, it puts more emphasis on 
uncertainty and hesitation degree of data, which is more suitable for dealing with noise and 
edge in image. Therefore, the proposed algorithm not only considers the gray features of 
images, but also enhances the effect of uncertainty in intuitionistic fuzzy set, leading to more 
excellent effect. 

Then the intuitionistic fuzzy set of image constructed by this method can be expressed as  
 

�𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖), 1−𝜇𝜇𝑖𝑖𝑖𝑖
(𝑥𝑥𝑖𝑖)

1+𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)
(𝑒𝑒𝑥𝑥𝑒𝑒 (−𝜇𝜇𝑖𝑖𝑖𝑖

(𝑥𝑥𝑖𝑖)
𝛼𝛼∙𝜎𝜎

))
1
𝛼𝛼, 1 − 𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖) −

1−𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)
1+𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)

(𝑒𝑒𝑥𝑥𝑒𝑒 (−𝜇𝜇𝑖𝑖𝑖𝑖
(𝑥𝑥𝑖𝑖)

𝛼𝛼∙𝜎𝜎
))

1
𝛼𝛼�𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋�.  

 

3.2 Determination of Initial Clustering Center 
In FCM algorithm, the initial clustering center plays a significant role in the performance of 
the algorithm and the final clustering results. The clustering results fluctuate with different 
initializations. Inappropriate initial clustering centers are likely to make the solution of the 
objective function fall into the local minimum, resulting in erroneous results. In view of this, 
many scholars have proposed different methods to optimize the initial clustering center, such 
as K-means algorithm, ant colony algorithm, and the logical model considering the 
correlation between samples [24-26]. Since the algorithm proposed in this paper is used for 
image segmentation, a method of determining initial cluster centers based on pixel features 
of grayscale images is proposed.  

For an image with pixel set 𝑋𝑋 = {𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑁𝑁} and 𝐿𝐿 gray levels 𝐺𝐺 = {𝜉𝜉1, 𝜉𝜉2, … , 𝜉𝜉𝐿𝐿}, 
and the number of categories to be clustered is 𝐶𝐶. Firstly, the gray histogram of the image is 
drawn, and then the number 𝑁𝑁 = {𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝐿𝐿}  of the pixels 𝑋𝑋  at each gray level 
𝜉𝜉𝑖𝑖(𝑖𝑖 = 1,2, … , 𝐿𝐿) in the histogram is calculated. The gray level 𝜉𝜉𝑚𝑚𝑚𝑚𝑥𝑥 corresponding to the 
largest number 𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥 = 𝑚𝑚𝑚𝑚𝑥𝑥{𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝐿𝐿} is selected as the first initial clustering center. 
Next, we propose the concept of standard distance of the pixels set: 

 
𝐷𝐷𝑠𝑠 = 1

∑ (𝑛𝑛𝑝𝑝⋅𝜉𝜉𝑝𝑝)𝐿𝐿
𝑝𝑝=1

∑ ∑ 𝑛𝑛𝑝𝑝 ∙ 𝑛𝑛𝑞𝑞 ∙ �𝜉𝜉𝑝𝑝 − 𝜉𝜉𝑞𝑞�
2 ∙ 𝑑𝑑(𝜉𝜉𝑝𝑝, 𝜉𝜉𝑞𝑞)𝐿𝐿

𝑞𝑞=1
𝐿𝐿
𝑝𝑝=1         (14) 
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Where 𝑑𝑑(𝜉𝜉𝑝𝑝, 𝜉𝜉𝑞𝑞) is the average Euclidean distance between pixels with gray level 𝜉𝜉𝑝𝑝 
and pixels with gray level 𝜉𝜉𝑞𝑞. Suppose there are 𝑛𝑛𝑝𝑝 pixels corresponding to gray level 𝜉𝜉𝑝𝑝, 
and 𝑛𝑛𝑞𝑞 pixels corresponding to gray level 𝜉𝜉𝑞𝑞, for each pixel belonging to above 𝑛𝑛𝑝𝑝 pixels, 
we calculate its Euclidean distance from each pixel in 𝑛𝑛𝑞𝑞 . There are 𝑛𝑛𝑝𝑝 ∙ 𝑛𝑛𝑞𝑞 distances in 
total, and 𝑑𝑑(𝜉𝜉𝑝𝑝, 𝜉𝜉𝑞𝑞) is the average distance. We define 𝐷𝐷𝑠𝑠  as the minimum threshold 
distance between two cluster centers. Let 𝑐𝑐 denotes the number of initial cluster centers 
which have already been found, when 𝑐𝑐 = 1, we define the set of non-clustering center as: 

 

𝐺𝐺1 = {𝜉𝜉𝑘𝑘||𝜉𝜉𝑘𝑘 − 𝜉𝜉𝑚𝑚𝑚𝑚𝑥𝑥| < 𝐷𝐷𝑠𝑠，𝑘𝑘 = 1,2, … , 𝐿𝐿}               (15) 
 

It denotes the set of gray levels whose distance from the first initial clustering center is 
less than the standard distance 𝐷𝐷𝑠𝑠, that is, these gray levels can not become clustering 
centers. Thus we update the gray set 𝐺𝐺 by removing the non-clustering center set 𝐺𝐺1 from 
itself: 

 
𝐺𝐺 = 𝐺𝐺 − 𝐺𝐺1                           (16) 

 
Then we would look for the next initial clustering center in the updated gray scale 𝐺𝐺. 

When we have found a clustering center, if 𝑐𝑐 < 𝐶𝐶, let 𝑐𝑐 = 𝑐𝑐 + 1, and the gray level of 
pixels with the largest number in the updated gray set is searched as the next initial 
clustering center. We then define non-clustering center set as 𝐺𝐺𝑐𝑐 = {𝜉𝜉𝑘𝑘||𝜉𝜉𝑘𝑘 − 𝜉𝜉𝑚𝑚𝑚𝑚𝑥𝑥| <
𝐷𝐷𝑠𝑠，𝑘𝑘 = 1,2, … , 𝐿𝐿，𝜉𝜉𝑘𝑘 ∉ 𝐺𝐺𝑟𝑟，𝑟𝑟 = 1,2, … , 𝑐𝑐 − 1} , and so on, the gray scale 𝐺𝐺  is 
continually updated until all the 𝐶𝐶 initial clustering centers are found. 

The clustering centers should have some representative features, and the distance between 
different cluster centers should be as large as possible to avoid local minima. The proposed 
method utilizes the maximum number of gray levels in the histogram to determine the initial 
clustering center, taking into account the gray features between pixels; the introduction of 
the standard distance allows the initial clustering centers to be dispersed as much as possible, 
avoiding the local minimum to make algorithm converge well. 

 

3.3 Kernel Space Distance Metric  
IFCM algorithm can perform good clustering effect for linear separable problems, and the 
Euclidean distance adopted is easy to calculate and implement [27]. However, many 
problems are linear inseparable in reality, and some non-convex data are difficult to calculate 
[28]. In this case, only using Euclidean intuitionistic fuzzy distance is not sufficient to 
calculate the distance between the data and the cluster center.  

In consideration of this problem, we propose an improved distance measure based on 
kernel space. The original data are mapped to the feature space of high dimension by kernel 
function, which makes the data separable. Then distance metric in high dimensional kernel 
space is calculated. 

Assume that the original data set is 𝑋𝑋 = {𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑁𝑁} ⊆ 𝑅𝑅𝑂𝑂 , it is mapped to the 
high-dimensional feature space by a nonlinear mapping 𝜙𝜙, and the new data set 𝜙𝜙(𝑋𝑋) =
{𝜙𝜙(𝑥𝑥1),𝜙𝜙(𝑥𝑥2), … ,𝜙𝜙(𝑥𝑥𝑁𝑁)} ⊆ 𝑅𝑅𝑇𝑇 is acquired. Then the distance metric based on kernel space 
can be expressed as: 
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𝑑𝑑𝑖𝑖𝑖𝑖2 �𝑥𝑥𝑖𝑖, 𝑣𝑣𝑖𝑖� =∥ 𝜙𝜙(𝑥𝑥𝑖𝑖) − 𝜙𝜙�𝑣𝑣𝑖𝑖� ∥2                  (17) 
 

Gaussian kernel function is one of the most widely used kernel functions. However, the 
edge of standard Gaussian kernel function tends to be infinitely small. In the inner product 
operation of the kernel function, the data on the edge are almost useless, which are 
equivalent to being cut off. In this regard, we need to do two improvements. On the one hand, 
moderate attenuation should be maintained at the far point; on the other hand, fast 
attenuation should be achieved at the current test point. Thus we construct the following 
kernel function based on Gaussian to map the data to high dimensional kernel space: 

 
𝐾𝐾�𝑥𝑥𝑖𝑖, 𝑣𝑣𝑖𝑖� = 𝑒𝑒𝑥𝑥𝑒𝑒 ( 𝜎𝜎𝐵𝐵

2

∥𝑣𝑣𝑖𝑖−𝑥𝑥𝑖𝑖∥2+𝜆𝜆
)                     (18) 

 
Where 𝜎𝜎𝐵𝐵 denotes the bandwidth of kernel function, 𝜆𝜆 is a displacement parameter, 

which controls the height and attenuation of the function curve. Experiment shows best 
effect when 𝜎𝜎𝐵𝐵 is 0.3, 𝜆𝜆 is between 0.2 and 0.4. Then, by utilizing the properties of the 
kernel function ∥ 𝜙𝜙(𝑚𝑚) −𝜙𝜙(𝑏𝑏) ∥2= 𝐾𝐾(𝑚𝑚,𝑚𝑚) − 2𝐾𝐾(𝑚𝑚, 𝑏𝑏) + 𝐾𝐾(𝑏𝑏, 𝑏𝑏)and substituting it to Eq. 
(17), we can get the distance measure between the data point and the clustering center: 
𝑑𝑑𝑖𝑖𝑖𝑖2 �𝑥𝑥𝑖𝑖, 𝑣𝑣𝑖𝑖� =∥ 𝜙𝜙(𝑥𝑥𝑖𝑖) − 𝜙𝜙�𝑣𝑣𝑖𝑖� ∥2= 𝐾𝐾(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖) − 2𝐾𝐾�𝑥𝑥𝑖𝑖, 𝑣𝑣𝑖𝑖� + 𝐾𝐾�𝑣𝑣𝑖𝑖, 𝑣𝑣𝑖𝑖�.  

 

3.4 Local Spatial-Gray Information Measure 
The clustering effect of standard FCM and IFCM algorithm is usually just determined by 
membership degree in the objective function, without considering the characteristics of the 
data and the local spatial information, resulting in low clustering accuracy and susceptibility 
to noise. In order to improve the robustness of clustering results, in this paper a novel local 
spatial-gray information measure is introduced in the objective function, which considers the 
intuitionistic fuzzy set, the spatial location information and the local gray feature at the same 
time. 

For an image with pixel set 𝑋𝑋 = {𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑁𝑁}, we define the similarity measure 
between pixels and cluster centers as: 

 

𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑥𝑥𝑒𝑒 (−𝑚𝑚𝑚𝑚𝑥𝑥��𝑚𝑚𝑖𝑖−𝑚𝑚𝑖𝑖�,�𝑏𝑏𝑖𝑖−𝑏𝑏𝑖𝑖��
𝜆𝜆𝑠𝑠

− ∥𝑔𝑔(𝑥𝑥𝑖𝑖)−𝑔𝑔(𝑣𝑣𝑖𝑖)∥2

𝜆𝜆𝑔𝑔
)             (19) 

 
Where (𝑚𝑚𝑖𝑖, 𝑏𝑏𝑖𝑖) and (𝑚𝑚𝑖𝑖 , 𝑏𝑏𝑖𝑖) denote the two-dimensional spatial coordinates of the pixel 

and the cluster center, 𝑔𝑔(𝑥𝑥𝑖𝑖) and 𝑔𝑔(𝑣𝑣𝑖𝑖) are the gray values of the pixel and the cluster 
center, 𝜆𝜆𝑠𝑠  and 𝜆𝜆𝑔𝑔  are the scale parameters of local spatial information and gray 
information, which control the proportion of different information. 

Define the gray difference of cluster center as: 
 

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖 =
∑ ∥𝑔𝑔(𝑥𝑥𝑖𝑖)−𝑔𝑔(𝑣𝑣𝑖𝑖)∥𝑥𝑥𝑖𝑖∈𝑁𝑁𝑟𝑟

𝑁𝑁𝑁𝑁𝑚𝑚
                      (20) 

 
Where 𝑁𝑁𝑟𝑟 is the neighborhood window centered on the clustering center, 𝑔𝑔(𝑥𝑥𝑖𝑖) and 

𝑔𝑔(𝑣𝑣𝑖𝑖) are the gray values of the pixel and the cluster center respectively, 𝑁𝑁𝑁𝑁𝑚𝑚 is the 
number of neighborhood pixels. 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖 represents the gray feature of the pixels around the 
cluster center. 
 



3130                    Kong et al.: A Novel Image Segmentation Method Based on Improved Intuitionistic Fuzzy C-Means 
Clustering Algorithm 

Next, we construct the local spatial-gray scale factor based on the gray difference and the 
similarity measure: 

 
𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑆𝑆𝑖𝑖𝑖𝑖

𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖+𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖+1
(1 − 𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖))𝑚𝑚 ∥ 𝑔𝑔(𝑥𝑥𝑖𝑖) − 𝑔𝑔(𝑣𝑣𝑖𝑖) ∥2          (21) 

 
Where 𝑆𝑆𝑖𝑖𝑖𝑖  denotes the similarity measure, 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖  denotes the gray difference, 𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖 

denotes the Euclidean distance between the pixel and the clustering center, 𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖) is the 
membership degree of the pixel, 𝑚𝑚 is a fuzzy constant, 𝑔𝑔(𝑥𝑥𝑖𝑖) and 𝑔𝑔(𝑣𝑣𝑖𝑖) are the gray 
values of the pixel and the cluster center. The local spatial-gray scale factor takes into 
account the degree of membership, the gray features of the pixels and the spatial position 
characteristics at the same time. In addition, since membership degree is closely related to 
non-membership and hesitation degree, the measure 𝑀𝑀𝑖𝑖𝑖𝑖 can consider both certainty and 
uncertainty of intuitionistic fuzzy set, which effectively improves the clustering accuracy of 
the algorithm. 

 

3.5 Improved Intuitionistic Fuzzy Entropy 
In order to maximize the correct points in the cluster and yield a better clustering effect, we 
then introduce intuitionistic fuzzy entropy in the objective function. The uncertainty of 
intuitionistic fuzzy set should be reflected in two aspects of fuzziness and intuition, in which 
fuzziness is determined by the degree of difference between membership and 
non-membership, and intuition is determined by hesitation degree. The intuitionistic fuzzy 
entropy proposed by Burillo et al. [29] does not have compatibility with fuzzy entropy and 
can only measure part of the uncertainty information of intuitionistic fuzzy set. In recent 
years, scholars have put forward many new methods of intuitionistic fuzzy entropy 
measurement, but generally speaking, they still have some defects: (1) The intuitionistic 
fuzzy entropy is determined just by the difference between the degree of membership and 
non-membership, while the effect of hesitation degree is ignored; (2) When the membership 
degree is equal to the degree of the non-membership, that is, when the difference is 0, the 
entropy value is always equal to 1, which is independent of the degree of hesitation [30]. 

In response to the above problems, we propose a new formula of intuitionistic fuzzy 
entropy, which considers the difference between membership and non-membership degree 
and the effect of hesitation degree at the same time. For the discourse domain 𝑋𝑋 =
{𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑁𝑁} and the intuitionistic fuzzy set 𝐴𝐴 = �𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖),𝜔𝜔𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖),𝜋𝜋𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)�𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋�, the 
formula of intuitionistic fuzzy entropy can be written as: 

 

𝐼𝐼𝐹𝐹𝐼𝐼(𝐴𝐴) = 1
𝑁𝑁
∑ 𝑑𝑑𝑖𝑖𝑛𝑛(𝜋𝜋

2
∙
1−�𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)−𝜔𝜔𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)�

2
+2𝜋𝜋𝑖𝑖𝑖𝑖

2 (𝑥𝑥𝑖𝑖)

2−�𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)−𝜔𝜔𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖)�
2
+𝜋𝜋𝑖𝑖𝑖𝑖

2 (𝑥𝑥𝑖𝑖)
)𝑁𝑁

𝑖𝑖=1             (22) 

 
When 𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖) = 1,𝜔𝜔𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖) = 0  or 𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖) = 0,𝜔𝜔𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖) = 1 , we can find 𝜋𝜋𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖) =

0, 𝐼𝐼𝐹𝐹𝐼𝐼(𝐴𝐴) = 0 , and the intuitionistic fuzzy set 𝐴𝐴  degenerates into a fuzzy set; when 

𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖) = 𝜔𝜔𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖), 𝐼𝐼𝐹𝐹𝐼𝐼(𝐴𝐴) = 1
𝑁𝑁
∑ 𝑑𝑑𝑖𝑖𝑛𝑛(𝜋𝜋

2
∙
1+2𝜋𝜋𝑖𝑖𝑖𝑖

2 (𝑥𝑥𝑖𝑖)
2+𝜋𝜋𝑖𝑖𝑖𝑖

2 (𝑥𝑥𝑖𝑖)
)𝑁𝑁

𝑖𝑖=1 , it is obvious that the greater the 

value of 𝜋𝜋𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖), the greater the value of 𝐼𝐼𝐹𝐹𝐼𝐼(𝐴𝐴). 
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This proposed method of measuring intuitionistic fuzzy entropy is more reasonable and 
embodies the fuzziness and intuition of intuitionistic fuzzy set, which can better determine 
and utilize the uncertainty of intuitionistic fuzzy set. Applying it to IFCM algorithm can 
yield a more accurate clustering result. 

 

3.6 Proposed Objective Function 
In our algorithm, the Euclidean intuitionistic fuzzy distance of standard IFCM is replaced by 
the kernel space distance metric, and the local spatial-gray information and improved 
intuitionistic fuzzy entropy proposed in this paper are introduced, then the novel image 
segmentation method based on improved IFCM algorithm is obtained, whose objective 
function is: 
 

�
𝑚𝑚𝑖𝑖𝑛𝑛 𝐽𝐽(𝑈𝑈,𝑉𝑉,𝐴𝐴) = ∑ ∑ 𝜇𝜇𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑𝑖𝑖𝑖𝑖2 (𝑥𝑥𝑖𝑖, 𝑣𝑣𝑖𝑖)𝐶𝐶

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1 +∑ ∑ 𝑀𝑀𝑖𝑖𝑖𝑖

𝐶𝐶
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 + 𝐼𝐼𝐹𝐹𝐼𝐼(𝐴𝐴)

𝑑𝑑𝑁𝑁𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑡𝑡 ∑ 𝜇𝜇𝑖𝑖𝑖𝑖𝐶𝐶
𝑖𝑖=1 = 1

    (23) 

 
Where 𝑁𝑁  is the number of image pixels, 𝐶𝐶  is the number of clusters, 𝜇𝜇𝑖𝑖𝑖𝑖  is the 

intuitionistic fuzzy membership function, 𝑚𝑚 is a intuitionistic fuzzy constant, 𝑑𝑑𝑖𝑖𝑖𝑖2  is the 
kernel space distance, 𝑀𝑀𝑖𝑖𝑖𝑖 is the local spatial-gray information measure, and 𝐼𝐼𝐹𝐹𝐼𝐼(𝐴𝐴) is the 
intuitionistic fuzzy entropy. 

To solve the above minimization problem, we introduce the Lagrange function, then the 
objective function can be expressed as: 

 
𝐼𝐼 = ∑ ∑ 𝜇𝜇𝑖𝑖𝑖𝑖𝑚𝑚𝑑𝑑𝑖𝑖𝑖𝑖2 (𝑥𝑥𝑖𝑖 , 𝑣𝑣𝑖𝑖)𝐶𝐶

𝑖𝑖=1
𝑁𝑁
𝑖𝑖=1 + ∑ ∑ 𝑀𝑀𝑖𝑖𝑖𝑖

𝐶𝐶
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1 + 𝐼𝐼𝐹𝐹𝐼𝐼(𝐴𝐴) −∑ 𝑙𝑙𝑖𝑖(∑ 𝜇𝜇𝑖𝑖𝑖𝑖 − 1𝐶𝐶

𝑖𝑖=1 )𝑁𝑁
𝑖𝑖=1 (24) 

 
Where 𝑙𝑙𝑖𝑖 is the Lagrange multiplier constant. For Eq. (24), the partial derivatives 𝐼𝐼 with 

respect to 𝜇𝜇𝑖𝑖𝑖𝑖, 𝑣𝑣𝑖𝑖 and 𝑙𝑙𝑖𝑖 are calculated respectively and make them 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜇𝜇𝑖𝑖𝑖𝑖

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣𝑖𝑖

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑙𝑙𝑖𝑖

= 0, 

then iterative formulas of the membership function and the cluster center can be acquired. Its 
iteration stop conditions are the same as FCM’s, that is, the maximum number of iterations 
𝑀𝑀 and the accuracy of objective function 𝑒𝑒.  

An overview of our proposed method is summarized in Algorithm 2. 
 

Algorithm 2 
Inputs: 

Image set 𝑥𝑥𝑖𝑖(𝑖𝑖 = 1,2, … ,𝑛𝑛), the number of clusters c. 
Output: 

The clustering and segmentation results. 
1:  Parameter initialization. 
2:  Determining initial clustering centers according to pixel features. 
3:  Set the number of iterations 𝑡𝑡 = 1. 
4:  if 𝑡𝑡 < 𝑀𝑀 then 
5:  Calculate non-membership degree 𝑣𝑣𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖) and hesitation degree 𝜋𝜋𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖). 
6:  Calculate kernel space distance 𝑑𝑑𝑖𝑖𝑖𝑖2 (𝑥𝑥𝑖𝑖 , 𝑣𝑣𝑖𝑖), local spatial-gray information measure 

𝑀𝑀𝑖𝑖𝑖𝑖 and improved intuitionistic fuzzy entropy 𝐼𝐼𝐹𝐹𝐼𝐼(𝐴𝐴).  
7:  Iterate membership degree 𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖) and clustering center 𝑣𝑣𝑖𝑖. 
8:     if |𝐽𝐽(𝑡𝑡) −  𝐽𝐽(𝑡𝑡 +  1)| < 𝑒𝑒 then 
9:     Go to step 15. 
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10:     else 
11:      𝑡𝑡 = 𝑡𝑡 + 1. 
12:     Go to step 4, end if.  
13:  else 
14:  Go to step 15, end if. 
15:  The maximum membership degree is the clustering result. 

4. Experiments 
Different types of images have different pixel characteristics, and there is a big difference 
between them. In order to validate the effectiveness of the proposed algorithm and verify its 
performance on different images, experiment is carried out on simple square image, 
publically available MRI brain image [31] and BSDS500 dataset [32]. Besides the proposed 
method, five representative fuzzy based algorithms as FCM, IFCM, KIFCM, IFCM-S and 
IIFCM are evaluated as well. To obtain quantitative comparison of segmentation results, we 
adopt the same evaluation measures as [19], in terms of similarity index (𝜌𝜌), false negative 
ratio (𝑟𝑟𝑑𝑑𝑛𝑛 ) and false positive ratio (𝑟𝑟𝑑𝑑𝑝𝑝 ). Different algorithms are implemented with 
MATALB 2015a on the machine equipped with a core 3.5 GHz with 8GB memory without 
any parallel framework.  
 

4.1 Simple Square Image 
To demonstrate the performance on different types of images, we first evaluate above six 
algorithms on a square image with a simple structure of size 256*256. The synthetic square 
image is composed of four classes with different gray values, which are 7, 78, 214 and 251 
respectively (as shown in Fig. 2(a)). The classes in image are separated into small patches 
and they are of different sizes. For simplicity, we call them C1 (gray value 7), C2 (gray value 
78), C3 (gray value 214) and C4 (gray value 251). The ground-truth of square image is 
shown in Fig. 2(c), which is segmented into four parts corresponding to four classes. To 
further evaluate the robustness to noise of different algorithms, the polluted square image (as 
shown in Fig. 2(b)) with salt and pepper 1% noise is processed by above six algorithms. Our 
experimental setup is as follows: intuitionistic fuzzy constant 𝑚𝑚 is 2, non-membership 
constant 𝛼𝛼  is 5, iterative stopping condition is 𝑒𝑒 = 0.00001 , maximum number of 
iterations 𝑀𝑀 = 1000, the bandwidth 𝜎𝜎𝐵𝐵 and displacement parameter 𝜆𝜆 of kernel function 
are 0.3 and 0.2 respectively, 𝜆𝜆𝑠𝑠 and 𝜆𝜆𝑔𝑔 of local spatial-gray information scale parameters 
are 2, window size takes 3*3 (𝑁𝑁𝑁𝑁𝑚𝑚 = 8) and the number of clusters 𝐶𝐶 is 4 corresponding 
to above classes. The segmented results of the proposed method is shown in Fig. 2(d), while 
Fig. 2(e)-(i) shows the segmented square image by FCM [5], IFCM [15], KIFCM [16], 
IFCMS [18] and IIFCM [19] respectively with setting optimal parameter values. Their 
quantitative comparisons are shown in Table 1, Table 2 and Table 3, and the best two 
results are shown in red and green.  

It is obvious from segmented results that all of the six algorithms perform well on simple 
structured image without much difference. However, from the perspective of robustness, 
there might be some differences. To have a further evaluation on different algorithms, the 
square images with salt and pepper 5% noise, Poisson noise and Gaussian 1% noise are 
segmented by above six algorithms. Their results are measured in terms of 𝜌𝜌, 𝑟𝑟𝑑𝑑𝑛𝑛 and 𝑟𝑟𝑑𝑑𝑝𝑝 
which are shown in Table 1, Table 2 and Table 3 respectively. We can find from Table 1 
that the proposed algorithm has the best similarity index 𝜌𝜌 amongst all the six algorithms 
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except the Poisson noise. As shown in Table 2 and Table 3, false negative ratio 𝑟𝑟𝑑𝑑𝑛𝑛 and 
false positive ratio 𝑟𝑟𝑑𝑑𝑝𝑝 values of the proposed algorithm and IIFCM are significantly better 
than others with various noise, while proposed method is always better than IIFCM more or 
less. It also can be noted from Table 1, Table 2 and Table 3 that different algorithms 
perform their best values in terms of 𝜌𝜌, 𝑟𝑟𝑑𝑑𝑛𝑛 and 𝑟𝑟𝑑𝑑𝑝𝑝 with salt and pepper 1% and Poisson 
noise. On the whole, our algorithm achieves great segmentation results and a best robustness 
to noise. 

 
 

(a)   (b)  

                   C1         C2         C3        C4 

(c)     

C1  

C2  

C3  

C4  

(d)         (e)         (f)         (g)         (h)          (i) 
 

Fig. 2. Square image and segmented results of different algorithms: (a)square image (b)square image 
with salt and pepper 1% noise, (c)ground-truth image, (d)proposed algorithm, (e)FCM algorithm, 

(f)IFCM algorithm, (g)KIFCM algorithm, (h)IFCM-S algorithm, (i)IIFCM algorithm. 
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Table 1. The similarity index (𝜌𝜌) on segmented square images with different noise 
Class Noise Proposed FCM IFCM KIFCM IFCMS IIFCM 

C1 

S&P 1% 0.9943 0.9724 0.9895 0.9902 0.9899 0.9932 
S&P 5% 0.9745 0.9335 0.9505 0.9636 0.9624 0.9746 
Poisson 0.9901 0.9671 0.9833 0.9835 0.9861 0.9855 

Gauss1% 0.9717 0.8536 0.9115 0.9324 0.9437 0.9696 

C2 

S&P 1% 0.9951 0.9760 0.9901 0.9943 0.9932 0.9941 
S&P 5% 0.9822 0.9411 0.9683 0.9725 0.9755 0.9816 
Poisson 0.9926 0.9675 0.9852 0.9885 0.9902 0.9932 

Gauss1% 0.9534 0.8632 0.9276 0.9307 0.9345 0.9383 

C3 

S&P 1% 0.9964 0.9786 0.9935 0.9940 0.9939 0.9955 
S&P 5% 0.9856 0.9520 0.9610 0.9695 0.9800 0.9860 
Poisson 0.9870 0.9710 0.9776 0.9781 0.9791 0.9790 

Gauss1% 0.9725 0.8821 0.9322 0.9421 0.9513 0.9601 

C4 

S&P 1% 0.9952 0.9751 0.9920 0.9925 0.9931 0.9937 
S&P 5% 0.9727 0.9390 0.9523 0.9615 0.9608 0.9612 
Poisson 0.9918 0.9699 0.9847 0.9862 0.9874 0.9891 

Gauss1% 0.9672 0.8714 0.8975 0.9035 0.9295 0.9531 
 

 
 

Table 2. The false negative ratio (𝑟𝑟𝑑𝑑𝑛𝑛) on segmented square images with different noise 
Class Noise Proposed FCM IFCM KIFCM IFCMS IIFCM 

C1 

S&P 1% 0.0045 0.0085 0.0067 0.0065 0.0059 0.0048 
S&P 5% 0.0088 0.0326 0.0263 0.0231 0.0185 0.0136 
Poisson 0.0002 0.0304 0.0103 0.0025 0.0017 0.0004 

Gauss1% 0.0396 0.2713 0.1351 0.1056 0.0819 0.0482 

C2 

S&P 1% 0.0053 0.0096 0.0075 0.0070 0.0068 0.0055 
S&P 5% 0.0214 0.0331 0.0252 0.0245 0.0249 0.0248 
Poisson 0.0003 0.0194 0.0170 0.0022 0.0014 0.0004 

Gauss1% 0.0314 0.2513 0.1817 0.0931 0.0655 0.0305 

C3 

S&P 1% 0.0047 0.0101 0.0084 0.0077 0.0072 0.0050 
S&P 5% 0.0276 0.0382 0.0314 0.0301 0.0292 0.0273 
Poisson 0.0072 0.0121 0.0093 0.0090 0.0087 0.0086 

Gauss1% 0.0311 0.0505 0.0422 0.0375 0.0340 0.0327 

C4 

S&P 1% 0.0041 0.0091 0.0078 0.0071 0.0052 0.0055 
S&P 5% 0.0183 0.0327 0.0261 0.0240 0.0230 0.0215 
Poisson 0.0082 0.0149 0.0126 0.0115 0.0110 0.0102 

Gauss1% 0.0135 0.1126 0.0749 0.0416 0.0286 0.0195 
 

 
 
 
 
 
 
 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019            3135 

Table 3. The false positive ratio (𝑟𝑟𝑑𝑑𝑝𝑝) on segmented square images with different noise 
Class Noise Proposed FCM IFCM KIFCM IFCMS IIFCM 

C1 

S&P 1% 0.0007 0.0396 0.0065 0.0032 0.0029 0.0011 
S&P 5% 0.0110 0.0449 0.0501 0.0411 0.0274 0.0183 
Poisson 0.0004 0.0117 0.0054 0.0026 0.0019 0.0004 

Gauss1% 0.0039 0.0925 0.0120 0.0055 0.0071 0.0058 

C2 

S&P 1% 0.0002 0.0134 0.0021 0.0011 0.0008 0.0003 
S&P 5% 0.0018 0.0208 0.0114 0.0055 0.0039 0.0021 
Poisson 0.0026 0.0722 0.0486 0.0209 0.0147 0.0025 

Gauss1% 0.0520 0.0800 0.2759 0.1882 0.1535 0.0703 

C3 

S&P 1% 0.0002 0.0097 0.0008 0.0005 0.0004 0.0004 
S&P 5% 0.0008 0.0184 0.0013 0.0010 0.0012 0.0010 
Poisson 0.0103 0.0321 0.0134 0.0125 0.0131 0.0110 

Gauss1% 0.1105 0.1631 0.1673 0.1538 0.1430 0.1024 

C4 

S&P 1% 0.0004 0.0076 0.0037 0.0019 0.0021 0.0005 
S&P 5% 0.0051 0.0293 0.0260 0.0187 0.0111 0.0068 
Poisson 0.0086 0.0228 0.0108 0.0112 0.0104 0.0083 

Gauss1% 0.0606 0.1703 0.1005 0.0981 0.0909 0.0821 

 
4.2 Simulated Brain Database 
The human brain has complex structures. The noise and ambiguity in boundaries between 
different tissues make it difficult to segment MRI brain image. Three main tissues of brain 
should be accurately segmented: cerebro spinal fluid (CSF), gray matter (GM) and white 
matter (WM) [33]. In this section, tests are performed on MRI brain images to further 
evaluate the segmentation performance of different algorithms. Simulated MRI brain images 
for testing and ground-truth images can be acquired from Brain Web [31], which is a 
publically available Simulated Brain Database (SBD). We explore how different methods 
can be used for the brain image segmentation task under the same experimental setting as the 
test on square image. Note that the number of cluster 𝑐𝑐 = 4 corresponding to GM, WM, 
CSF and background respectively.  

Fig. 3(a) shows a simulated MRI brain image of size 217*181, which is a T1-weighted 
image of slice thickness 1 mm, with 1% noise and 0 intensity non-uniformity (INU). 
Following the strategy outlined in [34, 35], image without non-brain tissues (as shown in Fig. 
3(b)) are obtained for segmentation. The ground-truth segmented images of CSF, GM and 
WM (background is not considered) are shown in Fig. 3(c). Then we provide MRI 
segmented results of different algorithms in Fig. 3(d)-(i), corresponding to the proposed 
algorithm, FCM, IFCM, KIFCM, IFCM-S and IIFCM respectively. Different algorithms are 
implemented with their best-optimized parameters. As described above, measurement 
metrics 𝜌𝜌, 𝑟𝑟𝑑𝑑𝑛𝑛 and 𝑟𝑟𝑑𝑑𝑝𝑝 are used to evaluate their performance quantificationally for GM 
and WM, which is shown in Table 4 and Table 5. We can find from evaluation results that 
the proposed algorithm achieves best values in terms of all the three measures for both GM 
and WM, indicating that the segmented results of proposed algorithm yield the most similar 
structure to ground-truth images, with the lowest probability of error.  
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(a)  (b)  

CSF        GM        WM 

(c)  

 

 

 

(d)         (e)          (f)          (g)         (h)          (i) 
 

Fig. 3. MRI brain image and segmented results of different algorithms: (a)MRI brain image of slice 
thickness 1 mm, with 1% noise and INU=0, (b)image without non-brain tissues, (c)ground-truth 

image, (d)proposed algorithm, (e)FCM algorithm, (f)IFCM algorithm, (g)KIFCM algorithm, 
(h)IFCM-S algorithm, (i)IIFCM algorithm. 

 
Table 4. Measurement metrics (𝜌𝜌, 𝑟𝑟𝑑𝑑𝑛𝑛, 𝑟𝑟𝑑𝑑𝑝𝑝) for GM segmented images by different algorithm with 

different noise level and INU 
Measurement 

metrics 
Noise 
level INU Proposed FCM IFCM KIFCM IFCMS IIFCM 

𝛒𝛒 
0% 

0 

0.8501 0.8411 0.8457 0.8464 0.8469 0.8482 
1% 0.8480 0.8390 0.8439 0.8451 0.8455 0.8466 
5% 0.8413 0.8346 0.8378 0.8395 0.8402 0.8415 

𝒓𝒓𝒇𝒇𝒇𝒇 
0% 0.2698 0.2813 0.2785 0.2751 0.2739 0.2723 
1% 0.2720 0.2836 0.2822 0.2783 0.2802 0.2752 
5% 0.2745 0.2865 0.2840 0.2812 0.2785 0.2786 

𝒓𝒓𝒇𝒇𝒇𝒇 
0% 0.0202 0.0233 0.0213 0.0213 0.0211 0.0210 
1% 0.0206 0.0237 0.0215 0.0216 0.0215 0.0215 
5% 0.0212 0.0255 0.0224 0.0219 0.0223 0.0220 
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𝛒𝛒 
0% 

20 

0.8555 0.8463 0.8512 0.8526 0.8559 0.8543 
1% 0.8562 0.8430 0.8513 0.8517 0.8518 0.8548 
5% 0.8523 0.8399 0.8498 0.8502 0.8510 0.8519 

𝒓𝒓𝒇𝒇𝒇𝒇 
0% 0.2514 0.2714 0.2636 0.2604 0.2588 0.2523 
1% 0.2599 0.2729 0.2626 0.2617 0.2609 0.2610 
5% 0.2589 0.2752 0.2595 0.2624 0.2600 0.2592 

𝒓𝒓𝒇𝒇𝒇𝒇 
0% 0.0201 0.0229 0.0215 0.0212 0.0212 0.0209 
1% 0.0207 0.0231 0.0215 0.0214 0.0214 0.0206 
5% 0.0214 0.0247 0.0221 0.0219 0.0220 0.0214 

 
Table 5. Measurement metrics (𝜌𝜌, 𝑟𝑟𝑑𝑑𝑛𝑛, 𝑟𝑟𝑑𝑑𝑝𝑝) for WM segmented images by different algorithm with 

different noise level and INU 
Measurement 

metrics 
Noise 
level INU Proposed FCM IFCM KIFCM IFCMS IIFCM 

𝛒𝛒 
0% 

0 

0.9306 0.9231 0.9247 0.9279 0.9294 0.9303 
1% 0.9326 0.9234 0.9245 0.9275 0.9281 0.9300 
5% 0.9331 0.9258 0.9283 0.9288 0.9290 0.9326 

𝒓𝒓𝒇𝒇𝒇𝒇 
0% 0.1146 0.1208 0.1169 0.1158 0.1153 0.1155 
1% 0.1138 0.1216 0.1166 0.1173 0.1170 0.1149 
5% 0.1168 0.1235 0.1182 0.1174 0.1166 0.1173 

𝒓𝒓𝒇𝒇𝒇𝒇 
0% 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 
1% 0.0000 0.0015 0.0001 0.0002 0.0001 0.0000 
5% 0.0007 0.0023 0.0012 0.0010 0.0009 0.0007 

𝛒𝛒 
0% 

20 

0.9295 0.9161 0.9199 0.9245 0.9270 0.9285 
1% 0.9287 0.9149 0.9215 0.9253 0.9264 0.9281 
5% 0.9286 0.9168 0.9208 0.9247 0.9252 0.9290 

𝒓𝒓𝒇𝒇𝒇𝒇 
0% 0.1200 0.1321 0.1235 0.1228 0.1220 0.1206 
1% 0.1205 0.1330 0.1239 0.1236 0.1231 0.1213 
5% 0.1226 0.1365 0.1277 0.1271 0.1268 0.1241 

𝒓𝒓𝒇𝒇𝒇𝒇 
0% 0.0000 0.0011 0.0000 0.0000 0.0001 0.0000 
1% 0.0000 0.0018 0.0002 0.0001 0.0003 0.0000 
5% 0.0009 0.0026 0.0020 0.0012 0.0018 0.0013 

 
In order to yield a more explicit comparative analysis, MRI brain images with different 

noise level (0%, 1% and 5%) and intensity non-uniformity (INU=0 and INU=20) are 
processed by all the six algorithms. Observing comparable results in Table 4 and Table 5, it 
is as expected that almost all the evaluation results of our algorithm yield best values in 
terms of above three measures. 

 

4.3 BSDS500 Dataset 
After carrying out experiments on Simulated Brain Database, we evaluate different 
algorithms on the Berkeley Segmentation Dataset and Benchmark (BSDS500) [32]. 
BSDS500 is a widely used dataset of natural images for segmentation, which is composed of 
200 training, 100 validation and 200 test images, and each image is manually labeled 
ground-truth image by annotators. To demonstrate the effectiveness of our segmentation 
algorithm, we show the segmentation results of our approach on several samples of the 
BSDS500 benchmark with their optimal parameters setting and the best segmentation effect, 
which are shown in Fig. 4.  
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Fig. 4. Some segmentation results of our algorithm on BSDS500 

 
 

To further evaluate the performance of different algorithms, from the perspective of the 
essence of clustering, images in BSDS500 are segmented and their results are measured by 
some clustering evaluation indexes. The experimental setting remains the same as above 
experiments. Below we first introduce some cluster validity measures.  

The partition coefficient 𝐹𝐹𝑐𝑐  and partition entropy 𝐻𝐻𝑐𝑐 are representative functions for 
evaluating the performance of fuzzy clustering. 0 ≤ 𝐹𝐹𝑐𝑐 ≤ 1, 0 ≤ 𝐻𝐻𝑐𝑐 ≤ 1. The greater the 
partition coefficient, or the smaller the partition entropy, then the higher the accuracy of 
clustering, the better the clustering effect. The Purity index evaluates the clustering 
performance by calculating the ratio of the number of correctly clustered data to the total 
data. It is easy to calculate with the value between 0 and 1. The value of a completely wrong 
cluster method is 0, and an entirely correct method is 1. In addition, from the aspects of 
classification compactness and classification distance, we measure Davies-Bouldin Index 
(𝐷𝐷𝐵𝐵), which is calculated by dividing the sum of the average distance between any two 
classes by the distance between their cluster centers. The smaller 𝐷𝐷𝐵𝐵, the smaller the 
intra-class distance and the greater the distance between classes, the better the clustering 
effect. Dunn Validity Index (𝐷𝐷𝑉𝑉𝐼𝐼) is another index measuring inter-class distance and 
intra-class distance. As intra-class distance becomes smaller, or the distance between classes 
becomes larger, then clustering effect is better and the value of 𝐷𝐷𝑉𝑉𝐼𝐼 increases.  

Without loss of generality, we randomly select 200 images in the dataset BSDS500. To 
synthetically measure the effectiveness of different algorithms, 200 selected images are 
processed by all the six algorithms. The final results based on five measuring metrics are 
obtained by averaging 200 images, as shown in Table 6. Time spending is also an important 
criteria for evaluating the performance of algorithms. Therefore, we give the average running 
time of different algorithms in Table 6 too. Besides, to evaluate the robustness to image 
noise of different algorithms on BSDS500, following the strategy in [8],we add noise with 
different noise level to 200 selected images and measure their average clustering accuracy, 
which is given in Table 7.  
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It can be seen from the experimental data that although our algorithm runs a relatively 

longer time, the results of different evaluation indexes of the proposed algorithm in Table 6 
and Table 7 are obviously better than those of other algorithms. That is to say, applying the 
algorithm to image segmentation can more accurately put a pixel-point into the 
corresponding class and get better clustering effect without losing the real-time. Besides, as 
we can see from the segmentation results in Fig. 4, our algorithm achieves great 
segmentation performance on BSDS500 images, especially those large and distinguishing 
objects. The main reasons are: firstly, the method of determining the initial clustering center 
takes into account the distribution of pixels and gray scale features, which makes the 
algorithm better than other algorithms in the initial stage; secondly, the hesitation  degree 
generated by our modified non-membership function considers more uncertainty, and it is 
more applicable to image segmentation; thirdly, the kernel space distance metric is 
introduced to make the linearly inseparable data separable in high-dimensional space, thus 
the classification ability has been improved effectively; fourthly, we propose a local 
spatial-gray information measure in the objective function to improve accuracy and 
robustness to noise: on the one hand, the gray relationship between pixels is considered; on 
the other hand, the spatial position relationship is taken into account as well; finally, the 
improved intuitionistic fuzzy entropy highlights even more the effect of uncertainty, which 
embodies fuzziness and intuition, making the segmentation results more accurate. Therefore, 
our algorithm can not only segment image well, but it can also deal with the uncertainty 
effectively, such as noise and cluster boundary. And the accompanying drawback is that 
computation and time cost is more. Even so, achieving significant performance improvement 
at the little cost of time spending, is obviously a rather satisfactory result.  

 
Table 6. The segmentation benchmarks on the BSDS 

Index Proposed FCM IFCM KIFCM IFCMS IIFCM 
𝑭𝑭𝒄𝒄 0.9915 0.8659 0.9022 0.9416 0.9689 0.9801 
𝑯𝑯𝒄𝒄 0.0231 0.0652 0.0392 0.0357 0.0291 0.0266 
𝒇𝒇𝒑𝒑𝒓𝒓𝒑𝒑𝒑𝒑𝒑𝒑 0.9563 0.8074 0.8544 0.8901 0.9091 0.9325 
𝑫𝑫𝑫𝑫 2.0048 3.0052 2.7118 2.4594 2.2957 2.1562 
𝑫𝑫𝑫𝑫𝑫𝑫 0.0803 0.0628 0.0697 0.0734 0.0753 0.0772 
𝑻𝑻𝒑𝒑𝑻𝑻𝑻𝑻 8.1520 5.9185 6.5472 6.8711 7.2123 7.6330 

 
Table 7. The clustering accuracy on the BSDS with different noise level 

Index Noise Proposed FCM IFCM KIFCM IFCMS IIFCM 

𝑨𝑨𝒄𝒄𝒄𝒄𝒑𝒑𝒓𝒓𝑨𝑨𝒄𝒄𝒑𝒑 

S&P 1% 0.9526 0.7108 0.8329 0.9113 0.9110 0.9406 
S&P 5% 0.9394 0.6833 0.8052 0.8852 0.8871 0.9220 
Poisson 0.9228 0.6645 0.7867 0.8624 0.8598 0.9038 
Gauss1% 0.9134 0.6436 0.7568 0.8270 0.8409 0.8915 

 
Next, we would compare clustering and segmentation performance of different algorithms 

from the aspect of data and statistics. There are two main evaluation indicators: precision and 
recall. Since the two indicators are always contradictory, we chose F1-measure to consider 
them simultaneously. The F1-measure is a measure of a test’s accuracy and can be 
interpreted as a scored mean of the precision and recall, which can be represented as 
𝐹𝐹1 = 2∙𝑃𝑃∙𝑅𝑅

𝑃𝑃+𝑅𝑅
, where 𝑃𝑃 is the precision, 𝑅𝑅 is the recall, the 𝐹𝐹1 score reaches its best value at 

1 and worst score at 0.  
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Image segmentation can be understood as a multi-classification problem, that is, 
classifying a pixel point to a cluster or another. To have a further comprehensive and 
objective evaluation, we evaluate different algorithms on BSDS300 and BSDS500 
benchmark dataset respectively measuring their F1-measures. Table 7 shows the 
F1-measures of six different image segmentation algorithms when choosing an optimal scale 
for the entire dataset (ODS), the aggregate F1-measure for the best scale in each image (OIS), 
and the average precision (AP) on the full recall range (equivalently, the area under the 
precision-recall curve). The maximum F1-measures of these algorithms are shown in Fig. 5. 

 

 
(a)                                 (b) 

Fig. 5. Evaluation results of different algorithms on the Berkeley Segmentation Dataset:  
(a)BSDS300, (b)BSDS500  

 
Table 7. The segmentation benchmarks on the BSDS 

 BSDS300 BSDS500 
ODS OIS AP ODS OIS AP 

FCM 0.64 0.67 0.65 0.65 0.68 0.65 
IFCM 0.70 0.74 0.71 0.69 0.72 0.70 

KIFCM 0.72 0.76 0.73 0.72 0.75 0.73 
IFCMS 0.73 0.76 0.74 0.73 0.76 0.75 
IIFCM 0.76 0.77 0.76 0.75 0.77 0.76 

Proposed 0.77 0.78 0.76 0.76 0.79 0.76 
 
From Table 7 and the curves in Fig. 5 we can see that the algorithm proposed in this paper 

has better F1-measures on different evaluations and different datasets. Moreover, it performs 
significantly better than other algorithms across almost the entire operating regime, which 
means it has a best classification precision and segmentation performance. 

5. Conclusion 
In this paper, we propose a novel image segmentation algorithm based on improved 
intuitionistic fuzzy set and C-means clustering algorithm. It overcomes the shortcomings of 
traditional FCM, IFCM and some existing algorithms, combining kernel space distance, 
local spatial information, local gray information and improved intuitionistic fuzzy entropy in 
the objective function. The initial clustering center is determined based on the gray features 
and spatial location of pixels, so that the algorithm performs excellent in processing noise 
and uncertainty in image. Besides, the intuitionistic fuzzy set and non-membership degree 
are generated by an improved method, which highlight the role of uncertainty effectively. 
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We conduct experiments on simple square image, MRI brain image and BSDS500 dataset 
respectively, and different evaluation measures are adopted to quantitatively evaluate the 
algorithm. In addition, we also compare proposed algorithm with five existing representative 
fuzzy clustering based segmentation algorithms. Experimental results demonstrate that the 
performance of image segmentation, the pixel clustering effect and the robustness to noise of 
the proposed algorithm are all significantly better than other algorithms. 
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