• Title/Summary/Keyword: Fuzzy Gain Tuner

Search Result 21, Processing Time 0.033 seconds

Water Level Control of PWR Steam Generator using Knowledge Information and Fuzzy Logic at Low Power (전문가 지식과 퍼지 논리를 이용한 과도상태에서의 가압경수로 증기발생기 수위제어)

  • Han, Ho-Min;Choi, Dae-Won;Woo, Young-Kwang;Bae, Hyeon;Kim, Sung-Shin
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1295-1298
    • /
    • 2003
  • The steam generator level in a PWR is very difficult to control particularly at low power. And the constant control gain and time value are not adaptive in steam generator level controller. In normal operation constant control gain and time value have no problem. But there is problem at low power. So variable control gains based on the temperature are required. The best control gain is decided by the experienced knowledge. A fuzzy gain tuner is used for the gain tuning. In the design of fuzzy gain-tuner processing, the experienced knowledge is employed for making fuzzy rules.

  • PDF

Water Level Control of PWR Steam Generator using Knowledge Information and Neural Networks (지식정보와 신경회로망을 이용한 가압경수로 증기발생기 수위제어)

  • Bae, Hyeon-Bae;Woo, Young-Kwang;Kim, Sung-Shin;Jung, Kee-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.322-327
    • /
    • 2003
  • The water level of a steam generator of pressurized light water nuclear Power generator is known as a subject whose control is difficult because of a shrinking and swelling effect that is been mutually contradictory in a variation of feed water. In this paper, a neural network model selects first coordinative controller by a inappropriate gain of two PI controllers and the selected controller's gain is tuned by a fuzzy self-tuner. Model inputs consist of the water level, the feed water, and the stream flow. One controller of both coupling controllers whose gain is handled firstly is decided based upon above data. The proposed method can analyze patterns of signals using the characteristic of neural networks and select one controller that needs to be tuned through the observed result in this paper. If one controller between both the water level controller and the feed water controller is selected by the neural network model then a gain of the PI controller is suitably tuned by the fuzzy self-tuner. Rules of the fuzzy self-tuner drew from the pattern of input and output data. In the summary, the goal of this Paper is to select the suitable controller and tune the control gain of the selected controller suitably through such two processes.

A Study on Development of a Fuzzy Tuner for Tuning Gains of a PI Contorller (PI제어기 이득 조정을 위한 퍼지동조기 개발에 관한 연구)

  • 허윤기;최일섭;최승갑
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.64-72
    • /
    • 1995
  • This paper proposes how to tune the gains of PI controllers in case of gain change in a process control system. Controllers of PI type have been used in industry and the gains of the controllers have been tuned by expert engineers. It, therefore, takes much time and efforts to tune the controllers. It is more difficult to find gains of multi-loop processes. The tuning method of a fuzzy tuner in this paper is developed based on the assumptions that the PI controllers are of analog type and are tuned off-line, and that the characteristic values must be supplied for the tuner. A Tuner using Fuzzy Logic(FLT1 is capable of showing presentlpast states of a process control system and finding gains of PI controllers. The verfication of the FLT is shown by various experiments.

  • PDF

Control of Systems Containing Deadzone of PID Controller using Fuzzy Compensator and Fuzzy Tuner (퍼지 보상기와 퍼지 동조기를 이용한 PID제어기의 Deadzone을 포함한 시스템 제어)

  • 박재형;김승철;조용성;최부귀
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.403-410
    • /
    • 1999
  • A conventional PID controller has poor performance when it applied to systems with unknown deadzones. To solve this problem, this paper proposes PID controller using two layered-fuzzy logic. The structure of controller is reconstructed with fuzzy compensator and fuzzy tuner on the conventional PID controller. Our proposed control scheme shows superior transient and steady-state performance compared to conventional PID controller. The scheme is robust to variations in deadzone nonlinearities as well as the steady-state gain of the plant. The performance of the developed controller is verified through simulation.

  • PDF

High Performance Speed Control of IPMSM Drive using Fuzzy-Neuro PI Controller (Fuzzy-Neuro PI 제어기를 이용한 IPMSM 드라이브의 고성능 속도제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Park, Ki-Tae;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1009-1010
    • /
    • 2007
  • This paper presents Fuzzy-Neuro PI controller of IPMSM drive using fuzzy and neural-network. In general, PI controller in computer numerically controlled machine process fixed gain. To increase the robustness, fixed gain PI controller, Fuzzy-Neuro PI controller proposes a new method based fuzzy and neural-network. Fuzzy-Neuro PI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner.

  • PDF

Auto tuning of the hydraulic servo control system using fuzzy set theory (퍼지 집합 이론을 응용한 유압 서보 제어계의 자동 이득 조절)

  • 이교일;나종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.352-357
    • /
    • 1987
  • The Auto Tuning Controller is designed using Fuzzy set theory. And to verify its validity it is Applied to the Auto Tuner of hydraulic Control System. Fuzzy Tuning Procedures are written by linguistic model and translated into C language formation by preprocessor. Then it is executed with state feedback controller in real time, Fuzzy Logic Controller adjusts state feedback gain by proper tuning logic in each step to satisfy the desired maximum overshoot and settling time.

  • PDF

HBPI Controller of IPMSM using fuzzy adaptive mechanism (피지적응 메카니즘을 이용한 IPMSM의 HBPI 제어기)

  • Lee, Jung-Ho;Choi, Jung-Sik;Ko, Jae-Sub;Kim, Jong-Kwan;Park, Ki-Tae;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.210-212
    • /
    • 2006
  • This paper presents Hybrid PI(HBPI) controller of IPMSM drive using fuzzy adaptive mechanism control. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness, fixed gain PI controller, HBPI controller proposes a new method based self tuning PI controller. HBPI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

High performance Control of Induction Motor using Hybrid-PI Controller (Hybrid-PI 제어기를 이용한 유도전동기의 고성능 제어)

  • Choii, Jung-Sik;Ko, Jae-Sub;Kim, Kil-Bong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.260-262
    • /
    • 2006
  • This paper presents Hybrid-PI controller of induction motor drive using fuzzy control. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness, fixed gain PI controller, Hybrid-PI controller proposes a new method based self tuning PI controller. Hybrid-PI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of induction motor are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

Hybrid PI Controller of IPMSM Drive using FAM Controller (FAM 제어기를 이용한 IPMSM 드라이브의 하이브리드 PI 제어기)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.192-197
    • /
    • 2007
  • This paper presents Hybrid PI controller of IPMSM drive using fuzzy adaptive mechanism(FAM) control. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness, fixed gain PI controller, Hybrid PI controller proposes a new method based self tuning PI controller. Hybrid PI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

HBPI Controller of Induction Motor using Fuzzy Adaptive Mechanism (퍼지 적응 메카니즘을 이용한 유도전동기의 HBPI 제어기)

  • Nam Su-Myung;Lee Hong-Gyun;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.395-401
    • /
    • 2005
  • This paper presents Hybrid PI(HBPI) controller of induction motor drive using fuzzy control. In general, PI controllers used in computer numerically controlled machines process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, HBPI controller proposes a new method based self tuning PI controller. HBPI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of induction motor are presented to show the effectiveness of the proposed gam tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.