• Title/Summary/Keyword: Functional central limit theorem

Search Result 40, Processing Time 0.022 seconds

A Functional Central Limit Theorem for the Multivariate Linear Process Generated by Negatively Associated Random Vectors

  • Kim, Tae-Sung;Seo, Hye-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.615-623
    • /
    • 2001
  • A functional central limit theorem is obtained for a stationary multivariate linear process of the form (no abstract. see full-text) where{ $Z_{t}$} is a sequence of strictly stationary m-dimensional negatively associated random vectors with E $Z_{t}$=O and E∥ $Z_{t}$$^2$<$\infty$ and { $A_{u}$} is a sequence of coefficient matrices with (no abstract. see full-text) and (no abstract. see full-text).text).).

  • PDF

A FUNCTIONAL CENTRAL LIMIT THEOREM FOR ASSOCIATED RANDOM FIELD

  • KIM, TAE-SUNG;KO, MI-HWA
    • Honam Mathematical Journal
    • /
    • v.24 no.1
    • /
    • pp.121-130
    • /
    • 2002
  • In this paper we prove a functional central limit theorem for a field $\{X_{\underline{j}}:{\underline{j}}{\in}Z_+^d\}$ of nonstationary associated random variables with $EX{\underline{j}}=0,\;E{\mid}X_{\underline{j}}{\mid}^{r+{\delta}}<{\infty}$ for some $r>2,\;{\delta}>0$and $u(n)=O(n^{-{\nu}})$ for some ${\nu}>0$, where $u(n):=sup_{{\underline{i}}{\in}Z_+^d{\underline{j}}:{\mid}{\underline{j}}-{\underline{i}}{\mid}{\geq}n}{\sum}cov(X_{\underline{i}},\;X_{\underline{j}}),\;{\mid}{\underline{x}}{\mid}=max({\mid}x_1{\mid},{\cdots},{\mid}x_d{\mid})\;for\;{\underline{x}}{\in}{\mathbb{R}}^d$. Our investigation implies and analogous result in the case associated random measure.

  • PDF

ON A FUNCTIONAL CENTRAL LIMIT THEOREM FOR THE LINEAR PROCESS GENERATED BY ASSOCIATED RANDOM VARIABLES IN A HILBERT SPACE

  • Ko, Mi-Hwa;Kim, Tae-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.133-140
    • /
    • 2008
  • Let {${\xi}_k,\;k\;{\in}\;{\mathbb{Z}}$} be a strictly stationary associated sequence of H-valued random variables with $E{\xi}_k\;=\;0$ and $E{\parallel}{\xi}_k{\parallel}^2\;<\;{\infty}$ and {$a_k,\;k\;{\in}\;{\mathbb{Z}}$} a sequence of linear operators such that ${\sum}_{j=-{\infty}}^{\infty}\;{\parallel}a_j{\parallel}_{L(H)}\;<\;{\infty}$. For a linear process $X_k\;=\;{\sum}_{j=-{\infty}}^{\infty}\;a_j{\xi}_{k-j}$ we derive that {$X_k} fulfills the functional central limit theorem.

A Central Limit Theorem for a Stationary Linear Process Generated by Linearly Positive Quadrant Dependent Process

  • Kim, Tae-Sung;Ko, Mi-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.153-158
    • /
    • 2001
  • A central limit theorem is obtained for stationary linear process of the form -Equations. See Full-text-, where {$\varepsilon$$_{t}$} is a strictly stationary sequence of linearly positive quadrant dependent random variables with E$\varepsilon$$_{t}$=0, E$\varepsilon$$^2$$_{t}$<$\infty$ and { $a_{j}$} is a sequence of real numbers with -Equations. See Full-text- we also derive a functional central limit theorem for this linear process.ocess.s.

  • PDF

Functional central limit theorems for ARCH(∞) models

  • Choi, Seunghee;Lee, Oesook
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.443-455
    • /
    • 2017
  • In this paper, we study ARCH(${\infty}$) models with either geometrically decaying coefficients or hyperbolically decaying coefficients. Most popular autoregressive conditional heteroscedasticity (ARCH)-type models such as various modified generalized ARCH (GARCH) (p, q), fractionally integrated GARCH (FIGARCH), and hyperbolic GARCH (HYGARCH). can be expressed as one of these cases. Sufficient conditions for $L_2$-near-epoch dependent (NED) property to hold are established and the functional central limit theorems for ARCH(${\infty}$) models are proved.

ON STRICT STATIONARITY OF NONLINEAR ARMA PROCESSES WITH NONLINEAR GARCH INNOVATIONS

  • Lee, O.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.2
    • /
    • pp.183-200
    • /
    • 2007
  • We consider a nonlinear autoregressive moving average model with nonlinear GARCH errors, and find sufficient conditions for the existence of a strictly stationary solution of three related time series equations. We also consider a geometric ergodicity and functional central limit theorem for a nonlinear autoregressive model with nonlinear ARCH errors. The given model includes broad classes of nonlinear models. New results are obtained, and known results are shown to emerge as special cases.

Asymptotics of a class of markov processes generated by $X_{n+1}=f(X_n)+\epsilon_{n+1}$

  • Lee, Oe-Sook
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 1994
  • We consider the markov process ${X_n}$ on R which is genereated by $X_{n+1} = f(X_n) + \epsilon_{n+1}$. Sufficient conditions for irreducibility and geometric ergodicity are obtained for such Markov processes. In additions, when ${X_n}$ is geometrically ergodic, the functional central limit theorem is proved for every bounded functions on R.

  • PDF

MAXIMAL INEQUALITIES AND AN APPLICATION UNDER A WEAK DEPENDENCE

  • HWANG, EUNJU;SHIN, DONG WAN
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.57-72
    • /
    • 2016
  • We establish maximal moment inequalities of partial sums under ${\psi}$-weak dependence, which has been proposed by Doukhan and Louhichi [P. Doukhan and S. Louhichi, A new weak dependence condition and application to moment inequality, Stochastic Process. Appl. 84 (1999), 313-342], to unify weak dependence such as mixing, association, Gaussian sequences and Bernoulli shifts. As an application of maximal moment inequalities, a functional central limit theorem is developed for linear processes with ${\psi}$-weakly dependent innovations.

A FUNCTIONAL CENTRAL LIMIT THEOREM FOR MULTIVARIATE LINEAR PROCESS WITH POSITIVELY DEPENDENT RANDOM VECTORS

  • KO, MI-HWA;KIM, TAE-SUNG;KIM, HYUN-CHULL
    • Honam Mathematical Journal
    • /
    • v.27 no.2
    • /
    • pp.301-315
    • /
    • 2005
  • Let $\{A_u,\;u=0,\;1,\;2,\;{\cdots}\}$ be a sequence of coefficient matrices such that ${\sum}_{u=0}^{\infty}{\parallel}A_u{\parallel}<{\infty}$ and ${\sum}_{u=0}^{\infty}\;A_u{\neq}O_{m{\times}m}$, where for any $m{\times}m(m{\geq}1)$, matrix $A=(a_{ij})$, ${\parallel}A{\parallel}={\sum}_{i=1}^m{\sum}_{j=1}^m{\mid}a_{ij}{\mid}$ and $O_{m{\times}m}$ denotes the $m{\times}m$ zero matrix. In this paper, a functional central limit theorem is derived for a stationary m-dimensional linear process ${\mathbb{X}}_t$ of the form ${\mathbb{X}_t}={\sum}_{u=0}^{\infty}A_u{\mathbb{Z}_{t-u}}$, where $\{\mathbb{Z}_t,\;t=0,\;{\pm}1,\;{\pm}2,\;{\cdots}\}$ is a stationary sequence of linearly positive quadrant dependent m-dimensional random vectors with $E({\mathbb{Z}_t})={{\mathbb{O}}$ and $E{\parallel}{\mathbb{Z}_t}{\parallel}^2<{\infty}$.

  • PDF