Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- P. Ango Nze, P. Buhlmann, and P. Doukhan, Weak dependence beyond mixing and asymptotics for nonparametric regression, Ann. Statist. 30 (2002), no. 2, 397-430. https://doi.org/10.1214/aos/1021379859
- P. J. Bickel and P. Bulmann, A new mixing notion and functional central limit theorems for a sieve bootstrap in time series, Bernoulli 5 (1999), no. 3, 413-446. https://doi.org/10.2307/3318711
- J. Dedecker and P. Doukhan, A new covariance inequality and applications, Stochastic Process. Appl. 106 (2003), no. 1, 63-80. https://doi.org/10.1016/S0304-4149(03)00040-1
- J. Dedecker, P. Doukhan, G. Lang, R. Leon, R. Jose Rafael, S. Louhichi, and C. Prieur, Weak dependence: with examples and applications, Lecture Notes in Statistics, 190, Springer, New York, 2007.
- P. Doukhan and S. Louhichi, A new weak dependence condition and applications to moment inequalities, Stochastic Process. Appl. 84 (1999), no. 2, 313-342. https://doi.org/10.1016/S0304-4149(99)00055-1
- P. Doukhan and M. H. Neumann, Probability and moment inequalities for sums of weakly dependent random variables with applications, Stochastic Process. Appl. 117 (2007), no. 7, 878-903. https://doi.org/10.1016/j.spa.2006.10.011
- E. Hwang and D. W. Shin, A study on moment inequalities under a weak dependence, J. Korean Statist. Soc. 42 (2013), no. 1, 133-141. https://doi.org/10.1016/j.jkss.2012.06.003
- S. Lee, Random central limit theorem for the linear process generated by a strong mixing process, Statist. Probab. Lett. 35 (1997), no. 2, 189-196. https://doi.org/10.1016/S0167-7152(97)00013-8
- B. L. S. Prakasa Rao, Random central limit theorems for martingales, Acta. Math. Acad. Sci. Hungar. 20 (1969), 217-222. https://doi.org/10.1007/BF01894583
- A. Reyni, On the central limit theorem for the sum of a random number of independent random variables, Acta. Math. Acad. Sci. Hungar. 11 (1960), 97-102. https://doi.org/10.1007/BF03157455
- G. G. Roussas and D. A. Ioannides, Moment inequalities for mixing sequences of random variables, Stochastic Anal. Appl. 5 (1987), no. 1, 61-120.
- S. Utev and M. Peligrad, Maximal inequalities and an invariance principle for a class of weakly dependent random variables, J. Theoret. Probab. 16 (2003), no. 1, 101-115. https://doi.org/10.1023/A:1022278404634
-
G. Xing, S. Yang, and A. Chen, A maximal moment inequaltiy for
$\alpha$ -mixing sequences and its applications, Statist. Probab. Lett. 79 (2009), 1429-1437. https://doi.org/10.1016/j.spl.2009.02.016 -
W. Xuejun, H. Shuhe, S. Yan, and Y.Wenzhi, Moment inequality for
$\varphi$ -mixing sequences and its applications, J. Inequal. Appl. (2009), Art. ID 379743, 12 pp. - S. C. Yang, Maximal moment inequalty for partial sums of strong mixing sequences and applications, Acta Math. Sin. (Eng. Ser.) 23 (2007), 1013-1024. https://doi.org/10.1007/s10114-005-0841-9
Cited by
- Stationary bootstrapping for common mean change detection in cross-sectionally dependent panels vol.80, pp.6-8, 2017, https://doi.org/10.1007/s00184-017-0627-y