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ON A FUNCTIONAL CENTRAL LIMIT THEOREM FOR THE
LINEAR PROCESS GENERATED BY ASSOCIATED
RANDOM VARIABLES IN A HILBERT SPACE

Mi1-Hwa Ko AND TAE-SuNG Kim

ABSTRACT. Let {&i, k € Z} be a strictly stationary associated sequence of
H-valued random variables with E¢, = 0 and E||£x]|2 < oo and {ax, k €
Z} a sequence of linear operators such that 372 _  |la;|1z) < oo. For

a linear process X = >, a;j&,—; we derive that {X}} fulfills the

j=—00
functional central limit theorem.

1. Introduction

Let H be a separable real Hilbert space with the norm || - ||z generated by
an inner product, (-,-)y and let {ex,k > 1} be an orthonormal basis in H.
Let L(H) be the class of bounded linear operators from H to H and denote
by || - l|z(a) its usual norm. Let {{,k € Z} be a strictly stationary sequence
of H-valued random variables, and {ax,k € Z} be a sequence of operators,
ar, € L(H). We define the stationary Hilbert space process by:

oo
(1.1) X, = Z ajfk_j,k € 7.
j=—00
The sequence {Xj,k € Z} is a natural extension of the multivariate linear
processes (Brockwell and Davis [5], Chap. 11). These types of processes with
values in functional spaces also facilitate the study of estimation and forecasting
problems for several classes of continuous time processes. For more details see

Bosq [3].
We define
) [nt]
(1.2) Wa(t)=n"2> Xy, te0,1].
k=1
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When {&,k € Z} is a sequence of H-valued ii.d. random variables such
that E|[&]|* < oo and B¢, = 0if 3277 [lajllny < oo, then the series in
(1.1) converges almost surely and in Li(H) (Denisevskii and Dorogovtsev [8]).
Moreover, X}, satisfies a functional central limit theorem (Bosq [3]) and the
Berry-Esseen inequality (Bosq [4]).

A sequence {&,1 < i < n} of real-valued random variables is said to be
associated if for any coordinatewise increasing functions f,¢g: R"™ — R

CO’U(f(gl, cee agn)ag(gla s ,gn)) > 0

whenever this exists. Associated sequences are widely encountered in applica-
tions; e.g. in reliability, in mathematical physics and percolation theory (c.f.
Barlow and Proschan [1], Newman [11], Cox and Grimmett [7]). Newman [11]
proved the central limit theorem, Newman and Wright [12] extended this to a
functional central limit theorem.

Recently Kim and Ko [10] derived a functional central limit theorem for the
linear process generated by associated random variables as follows.

Theorem 1.1 (Kim and Ko [10]). Let {&} be a strictly stationary sequence
of centered and associated random variables having finite second moment and
let {ax} be a sequence of numbers such that

oo
Z laj| < oc.

j=—00

Define X, by (1.1), W,, by (1.2) and assume

oo
o? =B +2)  E(G§) < oo
=2
Then, as n — oo
W,(t) = W',
where = indicates weak convergence and W1 is a Wiener process with variance
(Z;’;_Oo aj)?o?.

In the studying the infinite-dimensional case, our question is to what extent
Theorem 1.1 remains valid in the new context when we replace {£;} by an
infinite-dimensional space valued random variables, the constants by linear
bounded operators and absolute values by the corresponding norms. To see
new possible quality effects, we consider a simplest case of infinite dimensional
Hilbert space H in this paper.

2. Preliminaries

Theorem 2.1 (Newman, Wright [12]). Let {&1,...,&n} be a sequence of as-
sociated random wvariables with E|&|? < oo and E& = 04 > 1, and let
M., = max(Si,...,Sm), where Sy, =& + -+ -+ &n. Then

(2.1) E(M2) < E(S,,).
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As the notion of weakly associated random vectors in Burton et al. [6], we
introduce the concept of associated random vectors.

Definition 2.2. A finite sequence {&, 1 < i < n} of R%valued random
vectors is said to be associated if for all coordinatewise increasing functions
f,g: R R Cov(f(&r,...,60),9(&1,...,&)) > 0 whenever this is defined.
An infinite family of R%valued random vectors is associated if every finite
subfamily is associated.

From the functional central limit theorem of weakly associated random vec-
tors in Burton et al. [6], we can obtain the following functional central limit
theorem for stationary associated random vectors.

Theorem 2.3. Let {&;, ¢ > 1} be a strictly stationary associated sequence of
R?-valued random vectors with E¢; = Q and E||&||? < co. If

co d
(2.2) o’ = Bl +2) Y E(é;&;) < o0

i=2 j=1
then, as n — oo

(]
(2.3) nTEy g = W

=1

where W< is a d-dimensional Wiener process with covariance matriz I’ = [o;],

(2.4) = E(&rér) + Y [E(&&ij) + E(&16n)]-
1=2

From Definition 2.2 we consider the following notion:

Definition 2.4 (Burton et al. [6]). Let {&;, ¢ > 1} be a sequence of random
variables taking values in a separable Hilbert space H. {&, i > 1} is called
associated if for some orthonormal basis {ex, k¥ > 1} in H and for any d > 1
the d-dimensional sequence ((&;,e1), ..., (&, eq)),% > 1, is associated.

Definition 2.5 (Burton et al. [6]). Let {&, ¢ > 1} be a strictly stationary
associated sequence H-valued random variables with E¢; = 0 and E||&;|? < oo.
If

(2.5) 02:E|\51||2+22E(<§175¢>) < 00,
i=2
then
]
Ty G =W,

i=1
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where W is a Wiener process on H with covariance operator I' = (oy;), k,l =
1,2,...,
or = E((ex, &1){er, &) + D [E((ex, &a){er, &)

i=2

2

+ E({er, &1)(er, &)

(2.6)

3. Main results
To prove the main theorem we need the following lemmas:

Lemma 3.1. Let {&;, k € Z} be a strictly stationary associated sequence of H-
valued random variables with E& = 0 and E||&1]]? < oo and {cx} be a sequence
of bounded linear operators satisfying

o0

(3.1) > llellng < oo

j=—o00

If (2.5) holds, then there is a constant K such that, for every —oo < p < q < 00,

q q
(3.2) E||ch£jH12LI SK(Z 5117 cry)-

Jj=p Jj=p

Proof. By stationarity, (2.5), and the facts that ||c;&;l|z < [lcjll o[l 7 and
E((&,&;)) > 0 we have

q q
EI> cigly < Do leilliunElS
Jj=p Jj=p
q—1 q
+2> 3 lleillwalle e (&L )
i=p j=i+1
q e o] q
< Z||Cj|‘%(H)E|‘£j||%I+2ZE<§1a§j>(ZHQ”%(H))
Jj=p Jj=2 Jj=p
q
< K(ZHCJ‘||2L(H))-
Jj=p

O

Lemma 3.2. Let {by, k € Z} be a sequence of bounded linear operators in a
Hilbert space (H,|| - ||g) such that

o0

(3.3) > bkl < oo

k=—o0
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and

(3.4) > bp=0.
k=—o0
Then we have
1 0o n—j
(3.5) Ez H.zl:.biH%(H)HO asn — oo.
j=—o0 i=1-j

Proof. Denote by Dy = 3,5, [[bjllr(m). By taking into account (3.3) we
observe that

n—j o n—j
Y il < (2 Wil S0 S Teilam)

|j|>2n i=1—j lj|>n j=—00 i=1—j

IN

(3.6) -
= D, Z 051l L(zry — 0 as n — oo.

j=—0o0

Now for a fixed x in the interval [—2, 2], we define

—[nz]

Z bill7 sy -

i=1—[nz]

One can easily see that, under the conditions (3.3) and (3.4), for every x # 1
we have h,(z) — 0, as n — oo and 0 < hy(z) < (3272 163/ L(rry)?. Hence
by Lebesgue’s dominated convergence theorem, we obtain

2n—1 n—

(3.7) — Z I Z b||H—/ n(z)dr — 0 as n — oo.

7:—271 i=1—j

Therefore the conclusion (3.5) is a consequence of (3.6) and (3.7). O

Theorem 3.3. Let {&, k € Z} be a strictly stationary associated sequence of
H-valued random variables with B¢, = 0 and E||&1||?> < co. Let {ax,k € Z} be
a sequence of linear bounded operators such that

oo

(3.8) Y el < oo
Jj=—00
If (2.5) holds, then
[nt] X
(3.9) Lik=1"k =W,

Vn
where Xy, is defined by (1.1), W is a Wiener process on H with covariance
operator ATUA*, T is defined in Theorem 2.5, A = Z;’ifoo a; and A* denotes
the adjoint operator of A.
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Proof. First note that by Theorem 2.5 we have

Z [nt] ’D W.
f )

where W is a Wiener process on H with covariance operator AT'A* and that
from (1.1) we have

(3.10)

[nt] [nt] 0o [nt]
(311) ZXk = Z Z am&k—m = Z Z ak— ]
k=1m=—oc0 j=—0o0 k=1

It remains to show that
[nt] [nt]

(3.12) R BE

by Billingsley [2], Theorem 4.1.
By partitioning the last sum in (3.11) into two sums, one with j between 1
and n, and another containing all the other terms, we get the representation

[nt] [nt] oo [nt]
(3.13) Zxk—AZgJ_ > O kg,
j=—0o0 k=1
where
(3.14) bp=ap— A and b, =aqa; for [i]>1.
Now by Lemma 3.1 and Fatou Lemma, we deduce from (3.13)
[nt] [nt]
*EII ZXk - AZ@HH
nt] [nt
< EllZXk AZ@HH
[e’e] [TLt
(3.15) = gfl Z Qb ll
=—o0 k=1
[nt]
< Z 1> sl
j—foo k=1
00 [nt]—j

1
= Z | Z bi ||L(H :
]——oo i=1—j
Notice that the operators {b;,i € Z} being defined by (3.14) satisfy the condi-
tions of Lemma 3.2. Therefore from (3.15), (3.12) follows by applying Lemma
3.2. O
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Remark. Obviously, Theorem 3.3 is an extension of Theorem 1.1 to a Hilbert
space.

From Theorem 3.3 we obtain the following result.

Corollary 3.4 (Kim et al. [9]). Let {&{k, k € Z} be a strictly stationary
associated sequence of R?-valued random vectors with E¢; = O and E||&|? <
oo and let {B;} be a sequence of matriz such that

o0 o0

> IBjll <o Y Bj# Ouxa,

j=—o00 j=—o00

where for any d x d matric B = (a;;), ||B| = Z?:I E?:l la;;| and Ogxq
denotes the d x d zero matriz. Define X;, an Re-valued linear process of the

form Xy =377 Bj&k—j. If (2.2) holds, then

[nt]

—) X, = wd
\/ﬁ; k )

where W< is a d-dimensional Wiener process with covariance matriz T =
(e e AT (C2 o Aj) and T is defined in (2.4).

j=—o00
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