ON A FUNCTIONAL CENTRAL LIMIT THEOREM FOR THE LINEAR PROCESS GENERATED BY ASSOCIATED RANDOM VARIABLES IN A HILBERT SPACE

MI-HWA KO AND TAE-SUNG KIM

ABSTRACT. Let $\{\xi_k, k \in \mathbb{Z}\}$ be a strictly stationary associated sequence of H-valued random variables with $E\xi_k = 0$ and $E\|\xi_k\|^2 < \infty$ and $\{a_k, k \in \mathbb{Z}\}$ a sequence of linear operators such that $\sum_{j=-\infty}^{\infty} \|a_j\|_{L(H)} < \infty$. For a linear process $X_k = \sum_{j=-\infty}^{\infty} a_j \xi_{k-j}$ we derive that $\{X_k\}$ fulfills the functional central limit theorem.

1. Introduction

Let H be a separable real Hilbert space with the norm $\|\cdot\|_H$ generated by an inner product, $\langle\cdot,\cdot\rangle_H$ and let $\{e_k,k\geq 1\}$ be an orthonormal basis in H. Let L(H) be the class of bounded linear operators from H to H and denote by $\|\cdot\|_{L(H)}$ its usual norm. Let $\{\xi_k,k\in\mathbb{Z}\}$ be a strictly stationary sequence of H-valued random variables, and $\{a_k,k\in\mathbb{Z}\}$ be a sequence of operators, $a_k\in L(H)$. We define the stationary Hilbert space process by:

(1.1)
$$X_k = \sum_{j=-\infty}^{\infty} a_j \xi_{k-j}, k \in \mathbb{Z}.$$

The sequence $\{X_k, k \in \mathbb{Z}\}$ is a natural extension of the multivariate linear processes (Brockwell and Davis [5], Chap. 11). These types of processes with values in functional spaces also facilitate the study of estimation and forecasting problems for several classes of continuous time processes. For more details see Bosq [3].

We define

(1.2)
$$W_n(t) = n^{-\frac{1}{2}} \sum_{k=1}^{[nt]} X_k, \ t \in [0,1].$$

Received August 6, 2007.

 $^{2000\} Mathematics\ Subject\ Classification.\ 60F05,\ 60F17,\ 60G10.$

Key words and phrases. functional central limit theorem, linear process in a Hilbert space, association, linear operator, Hilbert space-valued random variable.

This work was partially supported by the Korean Research Foundation Grant funded by Korean Government(KRF-2006-521-C00026, KRF-2006-353-C00006).

When $\{\xi_k, k \in \mathbb{Z}\}$ is a sequence of H-valued i.i.d. random variables such that $E\|\xi_k\|^2 < \infty$ and $E\xi_k = 0$ if $\sum_{j=-\infty}^{\infty} \|a_j\|_{L(H)} < \infty$, then the series in (1.1) converges almost surely and in $L_1(H)$ (Denisevskii and Dorogovtsev [8]). Moreover, X_k satisfies a functional central limit theorem (Bosq [3]) and the Berry-Esseen inequality (Bosq [4]).

A sequence $\{\xi_i, 1 \leq i \leq n\}$ of real-valued random variables is said to be associated if for any coordinatewise increasing functions $f, g: \mathbb{R}^n \to \mathbb{R}$

$$Cov(f(\xi_1,\ldots,\xi_n),g(\xi_1,\ldots,\xi_n)) \ge 0$$

whenever this exists. Associated sequences are widely encountered in applications; e.g. in reliability, in mathematical physics and percolation theory (c.f. Barlow and Proschan [1], Newman [11], Cox and Grimmett [7]). Newman [11] proved the central limit theorem, Newman and Wright [12] extended this to a functional central limit theorem.

Recently Kim and Ko [10] derived a functional central limit theorem for the linear process generated by associated random variables as follows.

Theorem 1.1 (Kim and Ko [10]). Let $\{\xi_k\}$ be a strictly stationary sequence of centered and associated random variables having finite second moment and let $\{a_k\}$ be a sequence of numbers such that

$$\sum_{j=-\infty}^{\infty} |a_j| < \infty.$$

Define X_k by (1.1), W_n by (1.2) and assume

$$\sigma^2 = E\xi_1^2 + 2\sum_{j=2}^{\infty} E(\xi_1 \xi_j) < \infty.$$

Then, as $n \to \infty$

$$W_n(t) \Rightarrow W^1$$
,

where \Rightarrow indicates weak convergence and W^1 is a Wiener process with variance $(\sum_{j=-\infty}^{\infty} a_j)^2 \sigma^2$.

In the studying the infinite-dimensional case, our question is to what extent Theorem 1.1 remains valid in the new context when we replace $\{\xi_k\}$ by an infinite-dimensional space valued random variables, the constants by linear bounded operators and absolute values by the corresponding norms. To see new possible quality effects, we consider a simplest case of infinite dimensional Hilbert space H in this paper.

2. Preliminaries

Theorem 2.1 (Newman, Wright [12]). Let $\{\xi_1, \ldots, \xi_m\}$ be a sequence of associated random variables with $E|\xi_i|^2 < \infty$ and $E\xi_i = 0$ $i \geq 1$, and let $M_m = \max(S_1, \ldots, S_m)$, where $S_m = \xi_1 + \cdots + \xi_m$. Then

$$(2.1) E(M_m^2) \le E(S_m).$$

As the notion of weakly associated random vectors in Burton et al. [6], we introduce the concept of associated random vectors.

Definition 2.2. A finite sequence $\{\xi_i, 1 \leq i \leq n\}$ of \mathbb{R}^d -valued random vectors is said to be associated if for all coordinatewise increasing functions $f, g : \mathbb{R}^{nd} \to \mathbb{R}$, $Cov(f(\xi_1, \dots, \xi_n), g(\xi_1, \dots, \xi_n)) \geq 0$ whenever this is defined. An infinite family of \mathbb{R}^d -valued random vectors is associated if every finite subfamily is associated.

From the functional central limit theorem of weakly associated random vectors in Burton et al. [6], we can obtain the following functional central limit theorem for stationary associated random vectors.

Theorem 2.3. Let $\{\xi_i, i \geq 1\}$ be a strictly stationary associated sequence of \mathbb{R}^d -valued random vectors with $E\xi_1 = \mathbb{O}$ and $E||\xi_1||^2 < \infty$. If

(2.2)
$$\sigma^2 = E \|\xi_1\|^2 + 2 \sum_{i=2}^{\infty} \sum_{j=1}^{d} E(\xi_{1j}\xi_{ij}) < \infty$$

then, as $n \to \infty$

(2.3)
$$n^{-\frac{1}{2}} \sum_{i=1}^{[nt]} \xi_i \Rightarrow W^d,$$

where W^d is a d-dimensional Wiener process with covariance matrix $\Gamma = [\sigma_{kj}]$,

(2.4)
$$\sigma_{kj} = E(\xi_{1k}\xi_{1j}) + \sum_{i=2}^{\infty} [E(\xi_{1k}\xi_{ij}) + E(\xi_{1j}\xi_{ik})].$$

From Definition 2.2 we consider the following notion:

Definition 2.4 (Burton et al. [6]). Let $\{\xi_i, i \geq 1\}$ be a sequence of random variables taking values in a separable Hilbert space H. $\{\xi_i, i \geq 1\}$ is called associated if for some orthonormal basis $\{e_k, k \geq 1\}$ in H and for any $d \geq 1$ the d-dimensional sequence $(\langle \xi_i, e_1 \rangle, \ldots, \langle \xi_i, e_d \rangle), i \geq 1$, is associated.

Definition 2.5 (Burton et al. [6]). Let $\{\xi_i, i \geq 1\}$ be a strictly stationary associated sequence H-valued random variables with $E\xi_1 = 0$ and $E \|\xi_1\|^2 < \infty$. If

(2.5)
$$\sigma^{2} = E \|\xi_{1}\|^{2} + 2 \sum_{i=2}^{\infty} E(\langle \xi_{1}, \xi_{i} \rangle) < \infty,$$

then

$$n^{-\frac{1}{2}} \sum_{i=1}^{[nt]} \xi_i \Rightarrow W,$$

where W is a Wiener process on H with covariance operator $\Gamma = (\sigma_{kl}), k, l = 1, 2, ...,$

(2.6)
$$\sigma_{kl} = E(\langle e_k, \xi_1 \rangle \langle e_l, \xi_1 \rangle) + \sum_{i=2}^{\infty} [E(\langle e_k, \xi_1 \rangle \langle e_l, \xi_i \rangle) + E(\langle e_l, \xi_1 \rangle \langle e_k, \xi_i \rangle)].$$

3. Main results

To prove the main theorem we need the following lemmas:

Lemma 3.1. Let $\{\xi_k, k \in \mathbb{Z}\}$ be a strictly stationary associated sequence of H-valued random variables with $E\xi_1 = 0$ and $E||\xi_1||^2 < \infty$ and $\{c_k\}$ be a sequence of bounded linear operators satisfying

$$(3.1) \qquad \sum_{j=-\infty}^{\infty} \|c_j\|_{L(H)} < \infty.$$

If (2.5) holds, then there is a constant K such that, for every $-\infty ,$

(3.2)
$$E \| \sum_{j=p}^{q} c_j \xi_j \|_H^2 \le K(\sum_{j=p}^{q} \| c_j \|_{L(H)}^2).$$

Proof. By stationarity, (2.5), and the facts that $||c_j\xi_j||_H \leq ||c_j||_{L(H)}||\xi_j||_H$ and $E(\langle \xi_i, \xi_j \rangle) \geq 0$ we have

$$E\|\sum_{j=p}^{q} c_{j}\xi_{j}\|_{H}^{2} \leq \sum_{j=p}^{q} \|c_{j}\|_{L(H)}^{2} E\|\xi_{j}\|_{H}^{2}$$

$$+2\sum_{i=p}^{q-1} \sum_{j=i+1}^{q} \|c_{i}\|_{L(H)} \|c_{j}\|_{L(H)} E(\langle \xi_{i}, \xi_{j} \rangle)$$

$$\leq \sum_{j=p}^{q} \|c_{j}\|_{L(H)}^{2} E\|\xi_{j}\|_{H}^{2} + 2\sum_{j=2}^{\infty} E\langle \xi_{1}, \xi_{j} \rangle (\sum_{j=p}^{q} \|c_{j}\|_{L(H)}^{2})$$

$$\leq K(\sum_{j=p}^{q} \|c_{j}\|_{L(H)}^{2}).$$

Lemma 3.2. Let $\{b_k, k \in \mathbb{Z}\}$ be a sequence of bounded linear operators in a Hilbert space $(H, \|\cdot\|_H)$ such that

$$(3.3) \qquad \sum_{k=-\infty}^{\infty} \|b_k\|_{L(H)} < \infty$$

and

$$(3.4) \qquad \sum_{k=-\infty}^{\infty} b_k = 0.$$

Then we have

(3.5)
$$\frac{1}{n} \sum_{j=-\infty}^{\infty} \|\sum_{i=1-j}^{n-j} b_i\|_{L(H)}^2 \to 0 \text{ as } n \to \infty.$$

Proof. Denote by $D_n = \sum_{|j| \geq n} \|b_j\|_{L(H)}$. By taking into account (3.3) we observe that

(3.6)
$$\frac{1}{n} \sum_{|j| \ge 2n} \| \sum_{i=1-j}^{n-j} b_i \|_{L(H)}^2 \le (\sum_{|j| \ge n} \|b_j\|_{L(H)}) \frac{1}{n} \sum_{j=-\infty}^{\infty} (\sum_{i=1-j}^{n-j} \|b_i\|_{L(H)})$$
$$= D_n \sum_{j=-\infty}^{\infty} \|b_j\|_{L(H)} \to 0 \text{ as } n \to \infty.$$

Now for a fixed x in the interval [-2, 2], we define

$$h_n(x) = \| \sum_{i=1-[nx]}^{n-[nx]} b_i \|_{L(H)}^2.$$

One can easily see that, under the conditions (3.3) and (3.4), for every $x \neq 1$ we have $h_n(x) \to 0$, as $n \to \infty$ and $0 \le h_n(x) \le (\sum_{j=-\infty}^{\infty} \|b_i\|_{L(H)})^2$. Hence by Lebesgue's dominated convergence theorem, we obtain

(3.7)
$$\frac{1}{n} \sum_{j=-2n}^{2n-1} \| \sum_{i=1-j}^{n-j} b_i \|_H^2 = \int_0^2 h_n(x) dx \to 0 \text{ as } n \to \infty.$$

Therefore the conclusion (3.5) is a consequence of (3.6) and (3.7).

Theorem 3.3. Let $\{\xi_k, k \in \mathbb{Z}\}$ be a strictly stationary associated sequence of H-valued random variables with $E\xi_1 = 0$ and $E\|\xi_1\|^2 < \infty$. Let $\{a_k, k \in \mathbb{Z}\}$ be a sequence of linear bounded operators such that

$$(3.8) \qquad \sum_{j=-\infty}^{\infty} ||a_j||_{L(H)} < \infty.$$

If (2.5) holds, then

$$\frac{\sum_{k=1}^{[nt]} X_k}{\sqrt{n}} \Rightarrow W,$$

where X_k is defined by (1.1), W is a Wiener process on H with covariance operator $A\Gamma A^*$, Γ is defined in Theorem 2.5, $A = \sum_{j=-\infty}^{\infty} a_j$ and A^* denotes the adjoint operator of A.

Proof. First note that by Theorem 2.5 we have

(3.10)
$$\frac{A\sum_{k=1}^{[nt]} \xi_k}{\sqrt{n}} \to^{\mathcal{D}} W,$$

where W is a Wiener process on H with covariance operator $A\Gamma A^*$ and that from (1.1) we have

(3.11)
$$\sum_{k=1}^{[nt]} X_k = \sum_{k=1}^{[nt]} \sum_{m=-\infty}^{\infty} a_m \xi_{k-m} = \sum_{j=-\infty}^{\infty} (\sum_{k=1}^{[nt]} a_{k-j}) \xi_j.$$

It remains to show that

(3.12)
$$n^{-\frac{1}{2}} \| \sum_{k=1}^{[nt]} X_k - A \sum_{j=1}^{[nt]} \xi_j \| \to^p 0$$

by Billingsley [2], Theorem 4.1.

By partitioning the last sum in (3.11) into two sums, one with j between 1 and n, and another containing all the other terms, we get the representation

(3.13)
$$\sum_{k=1}^{[nt]} X_k - A \sum_{j=1}^{[nt]} \xi_j = \sum_{j=-\infty}^{\infty} (\sum_{k=1}^{[nt]} b_{k-j}) \xi_j,$$

where

(3.14)
$$b_0 = a_0 - A \text{ and } b_i = a_i \text{ for } |i| \ge 1.$$

Now by Lemma 3.1 and Fatou Lemma, we deduce from (3.13)

$$\frac{1}{n}E \| \sum_{k=1}^{[nt]} X_k - A \sum_{j=1}^{[nt]} \xi_j \|_H^2$$

$$\leq \frac{1}{[nt]}E \| \sum_{k=1}^{[nt]} X_k - A \sum_{j=1}^{[nt]} \xi_j \|_H^2$$

$$= \frac{1}{[nt]}E \| \sum_{j=-\infty}^{\infty} (\sum_{k=1}^{[nt]} b_{k-j}) \xi_j \|_H^2$$

$$\leq K \frac{1}{[nt]} \sum_{j=-\infty}^{\infty} \| \sum_{k=1}^{[nt]} b_{k-j} \|_H^2$$

$$= K \frac{1}{[nt]} \sum_{j=-\infty}^{\infty} \| \sum_{i=1-j}^{[nt]-j} b_i \|_{L(H)}^2.$$

Notice that the operators $\{b_i, i \in \mathbb{Z}\}$ being defined by (3.14) satisfy the conditions of Lemma 3.2. Therefore from (3.15), (3.12) follows by applying Lemma 3.2.

Remark. Obviously, Theorem 3.3 is an extension of Theorem 1.1 to a Hilbert space.

From Theorem 3.3 we obtain the following result.

Corollary 3.4 (Kim et al. [9]). Let $\{\xi_k, k \in \mathbb{Z}\}$ be a strictly stationary associated sequence of \mathbb{R}^d -valued random vectors with $E\xi_1 = \mathbb{O}$ and $E\|\xi_1\|^2 < \infty$ and let $\{B_i\}$ be a sequence of matrix such that

$$\sum_{j=-\infty}^{\infty} \|B_j\| < \infty \sum_{j=-\infty}^{\infty} B_j \neq \mathbb{O}_{d \times d},$$

where for any $d \times d$ matrix $B = (a_{ij})$, $||B|| = \sum_{i=1}^{d} \sum_{i=1}^{d} |a_{ij}|$ and $\mathbb{O}_{d \times d}$ denotes the $d \times d$ zero matrix. Define X_k an \mathbb{R}^d -valued linear process of the form $X_k = \sum_{j=-\infty}^{\infty} B_j \xi_{k-j}$. If (2.2) holds, then

$$\frac{1}{\sqrt{n}} \sum_{k=1}^{[nt]} X_k \Rightarrow W^d,$$

where W^d is a d-dimensional Wiener process with covariance matrix $T = (\sum_{j=-\infty}^{\infty} A_j) \Gamma(\sum_{j=-\infty}^{\infty} A_j)'$ and Γ is defined in (2.4).

References

- [1] R. E. Barlow and F. Proschan, Statistical Theory of Reliability and Life Testing: Probability models Holt, Rinehart and Winston, New York, 1975.
- [2] P. Billingsley, Convergence of Probability, John Wiley, New York, 1968.
- [3] D. Bosq, Linear Processes in Function Spaces, Lectures Notes in Statistics, 149, Springer, Berlin, 2000.
- [4] ______, Berry-Esseen inequality for linear processes in Hilbert spaces, Statist. Probab. Letters 63 (2003), 243–247.
- [5] P. Brockwell and R. Davis, Time Series, Theory and Method. Springer, Berlin, 1987.
- [6] R. A. R. Burton and H. Dehling, An invariance principle for weakly associated random vectors, Stochastic Processes Appl. 23 (1986), 301–306.
- [7] J. T. Cox and G. Grimmett, Central limit theorems for associated random variables and the percolation model, Ann. Probab. 12 (1984), 514–528.
- [8] N. A. Denisevskii and Y. A. Dorogovtsev, On the law of large numbers for a linear process in Banach space, Soviet Math. Dokl. 36 (1988), no. 1, 47–50.
- [9] T. S. Kim, M. H. Ko, and S. M. Chung, A central limit theorem for the stationary multivariate linear processes generated by associated random vectors, Commun. Korean Math. Soc. 17 (2002), no. 1, 95–102.
- [10] T. S. Kim and M. H. Ko, On a functional central limit theorem for stationary linear processes generated by associated processes, Bull. Korean Math. Soc. 40 (2003), no. 4, 715–722.
- [11] C. M. Newman, Normal fluctuations and the FKG inequalities, Comm. Math. Phys. 74 (1980), 119–128.
- [12] C. M. Newman and A. L. Wright, An invariance principle for certain dependent sequences, Ann. Probab. 9 (1981), 671–675.

MI-HWA KO DEPARTMENT OF MATHEMATICS WONKWANG UNIVERSITY JEONBUK 570-749, KOREA

 $E ext{-}mail\ address: songhack@wonkwang.ac.kr}$

TAE-SUNG KIM
DEPARTMENT OF MATHEMATICS
WONKWANG UNIVERSITY
JEONBUK 570-749, KOREA

 $E\text{-}mail\ address: \verb|starkim@wonkwang.ac.kr||$