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Asymptotics of a Class of Markov Processes
Generated by X, = f(X,) + €n411

Oe-Sook Lee !

ABSTRACT

We consider the Markov process {X,} on R which is generated by
Xnt+1 = f(Xn) + €n41. Sufficient conditions for irreducibility and geo-
metric ergodicity are obtained for such Markov processes. In additions,
when { X} is geometrically ergodic, the functional central limit theorem
is proved for every bounded functions on R.
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1. PRELIMINARIES

Suppose {X,} is a Markov process taking values in some arbitrary space
(S,¢) with n-step transition probability

P™)(z,B)=Pr(X,€B|Xo=2), z€8,Bec(.
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We shall call a Markov process with transition probabilities P(™(z, B) -
irreducible for some non-trivial o - finite measure ¢ on ¢ if whenever ¢(B) > 0,

E 27"PM(z,B) >0 foreveryze€ S.

n=1

A non-trivial o-finite measure 7 on ( is called subinvariant for {X,} if

/P(m,B)r(dz) <=(B), Bec(. (1.1)
7 is called invariant if equality holds in (1.1) for all B € (.

If {X,} is a p-irreducible process, there is a subinvariant measure stronger
than ¢ (see [Jain and Jamison (1967)]), and a subinvariant measure which is
finite is necessarily invariant. If the unique invariant measure 7 is finite, then
we shall call {X,} positive recurrent.

We call {X,,} geometrically ergodic if it is positive recurrent and there exists
positive p < 1 such that || P™(z,) —7(-) || = O(p*)(n — o) for 7 - a.s.
z € S, where || - || denotes the total variation norm and O stands for the usual
"big O”.

When using a Markov process as a model, it is often of great importance
to know whether the model is positive recurrent, or whether the model is
geometrically ergodic. There are extensive literature on these subjects for
the case that {X,} is irreducible (see [Jain and Jamison(1967)], [Lee(1988)],
[Lee(1991)], [Tong(1990)], [Tweedie(1975)] etc.). For the case that {X,} is
non-irreducible, see [Bhattacharya and Lee (1988)].

Let {X,} be a p-irreducible Markov process on (5, () with transition prob-
abilities P(™(z,-). Call a set B € ¢ small if @(B) > 0 and for every A € (
with p(A) > 0, there exists j such that

J
3_161}1; nzzjl P (z, A) > 0.

For an irreducible, aperiodic Markov process { X, } with state space (.9,¢),( is
countably generated, following theorem has proved by Nummelin and Toumi-
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nen (1982).

Theorem 1.1. Assume that there exist a nonnegative measurable function
gon S, asmall set B € (, and real numbers r > 1, > 0 such that

[ Pla,dn)gy) < (1/r)g(z) —¢, =€ B,
sup Jo P(@:dy)g(y) < oo,

Then {X,} is geometrically ergodic.

In this paper, we are interested in the process of {X,} which is generated
by the stochastic difference equation of the form

Xn+1 = f(Xp) + €np1, n >0, (1.2)
where { is a measurable function on R into R , {€, : n > 1} is sequence of
independent, indentically distributed random variables on R with distribution
Q, and X, is arbitrary but independent of ¢,,.

Let B be the class of Borel sets of R and u the Lebesgue measure.
Then {X, : n > 0} with n-step transition probability function

P™(2,B)=Pr(X,€B|Xo=2z), z€ R, Be€B,
forms a Markov process with state space (R, B, p).

In section 2, we give sufficient conditions for irreducibility and geometric er-

godicity. In section 3, we find a class of functions h in L%(R, ), for which
functional central limit theorem holds.

2. IRREDUCIBILITY AND GEOMETRIC
ERGODICITY

Lemma 2.1. For {X,} in (1.2), if { is continuous, then for sequence z,, in
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R converging to x, P(z,,-) converges weakly to P(z,-) as n — oo.

Proof. Suppose that g is a real-valued bounded continuous function on R
and that z, converges to r as n — oo. Then

[9@)P(end) = [g(z+ f(2n)@(d2)
— /g(z + f(z))Q(dz), by bounded convergence theorem

= /g(z)P(:c,dz).
Throughout this paper, we assume that f in equation (1.2) is continuous.

Theorem 2.2. If Q has a nonzero absolutely continuous component with
respect to g with density q which is positive a.e. [g] on R, then the Markov
process {X,} is aperiodic and p-irreducible.

Proof. P(z,B) = Q(B — f(z)) = / (y)dy = 0 & u(B - f(z)) =

q
B-f(z)
0& pu(B)=0
because of the translation invariance of u.

The following theorem which was proved by O. Lee(1988) has weakened
the condition on Q for {X,} to be irreducible.

Theorem 2.3. Suppose Q has a nonzero absolutely continuous component
with respect to x4 whose density q is positive on a nonempty open set V. Define

VO = f(@)+V, VI ={f(2)+V:ze V)

V.=V, W=V

n=1 z€R

If there exists A € B with A C W and u(A) > 0, then the process is p—
irreducible where ¢(B) = u(B N A) for Borel set B.

Let
a=_lim_f(z)/e,@= _lm f(z)/z,f = lim f(z)/,B = Tim f(z)/z.

T——00 T—00 =00
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Make the assumptions on g, @, f3, B, as follows :
Assumption I

(a)0<a<a<l, 0<B<B<I;
(b) o <a<ax<, 0<B<B<I;
(c)0<a<a<l, ~00<f<B<0;

(da<0, pB<0, af<l.

Theorem 2.4. Suppose Q has a density function q on R which is positive
everywhere and Fe; = 0. Then each of the assumptions I is a sufficient condi-
tion for the existence of the unique invariant probability for {X,}.

Proof. See [C. Lee (1991)]
The following is proved, by modifying the idea of C. Lee (1991).

Theorem 2.5. Let {X,} be the process obtained by (1.2). If Q satisfies
one of the conditions on theorem 2.2 and theorem 2.3, and E|e;| < oo, then
each one of the assumptions I is sufficient for the geometric ergodicity of {X,}

Proof. Since f is continuous, £ — [ ¢(y)P(z,dy) is continuous for every
real-valued bounded continuous function g. If we set X’ as the support of
subinvariant measure =, then the assumption ensures that X is second cate-
gory. Hence every compact set is small (see [Cogburn (1975)])

y (2) = az ifz>0
we assume 9(z) = blz] if z <0 for some 0 < a,b< oo,

[9wP@dy) = [g(f(z) +2)Qdz)

- Amﬂwaumy+amwa_ﬁmﬂwﬁg@y+@Qu@
< aEle;|+ bEles] + af(a) Q(dz) — bf(=) Q(dz
f(z)+220 f(z)+2<0

Hence

).
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if f(z) 20, [g(y)P(z,dy) < C +af(z) and
if f(z) <0, [g(y)P(x,dy) < C —bf(x), where C = (a + b)E|e,|

Moreover, for a compact set B

sup | ¢(y)P(z,dy) < C + max{a,b}sup |f(z)| < oo,
z€B J B¢ reB

since f is continuous. To prove the geometric ergodicity of {X,}, it remains to
show that the existence of nonnegative measurable function g, compact set B,
real numbers r > 1, > 0 such that

[9@)P@dy) < (1/r)g(z) ~¢, =€ B
Let € > 0 be arbitrary but fixed.
(a) Suppose 0 < a <@ <1, 0<£§B< 1.
Define g(z) = |z|,z € R. Choose 8,8',6” > 0 such that
O<a-f<a+bf<l<a+ld, 0<B-0<B+0<B+0"<1.
By definitions of a, @, 3, B, there exist My;, Mi; > 0 such that
forx < —My, (a—0)z2> f(z) > (a@+0)z and

forz > My, (B—10) < f(z) < (B+0)z.
Now let

rn=(@+6)/(@+06), r=(B+6")/(B+9).

For z < — My,

[9w)P(z.dy) < C-f()
< C+(a+6)(-z)
<

(1/r)((@+ 0')(=z) + nC)

Since (@ + 6') > 1, there exist M], > My, such that if ¢ < — M,
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(@+6)(—z)+rC <(—z)—re.
Therefore if ¢ < —Mj;,
[9w)P@,dy) < (n)(-2) -
= (1/r1)g(z) —e.
On the other hand if £ > M,
[9@)P@,dy) < C+ @B+
< (1/r2)((B + 6")z + r20).
We may choose Mj, > Mj; such that for z > M{,,
(B+0")z+rC <z —ree.
Hence if z > Mj,, [ ¢(y)P(z,dy) < (1/r3)g(z) —e.
(b) Suppose —c0o <a<a<0, 0<gB<p<1.

Suppose —b < g for some b, 0 < b< oo.

blz| ifz <O.

Choose r3 > 1 such that —(1/r3)b < .
We may take 6,8”,0, > 0 with § < 6; such that

Define g(z) = { z ifz20

—b<a-0<a+0<0, —(1/r3)b+ 6, <aq,
0<fB-0<B+0<P+0" <1

Now choose My such that if z < =My, (a—0)z > f(z) > (@+0)=.
For 2 < — My, f(z) > 0 implies

[9wPedy) < C+(a-0)a

<
< (1/ra)b(—2) + (0 — 61)(z) + C.
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Choose M;, > My such that if z < —Mj,, (8 —6,)(—z) +C £ —¢ and

therefore we have
[ 9w)Pz,dy) < (1/rs)g() — <.
By the second part of the case (a), we have
[9w)P(e,dy) < (1/r)g(a) =<, if > M,

(c) Suppose 0 < a<a<1l, —-oo<pB<B<0.
Suppose —a < 3 for some a, 0 < a < oco.

Define  g(2) ={ e igfzxioo.

Choose r4 > 1 such that —(1/r4)a < B. We pick 0, ¢, §; > 0, 6 < 0, such that
O<a-b6<a+lb<l<a+?,
—a<B-0<B+60<0, —(1/ra+6;<p.

There exist M3y > 0 such that for z > M3,
/g (z,dy) < (1/ra)az + (8 — 63) = + C.

Since 6 — 8; < 0, We may choose M}, > Ms, such that if z > MJ,,
[9w)P(a,dy) < (1/ra)g(z) - e.

By the first part of case (a),
/g (z,dy) < (1/r)g(z) —e, ifz< M.

(d) Suppose @ < 0, B < 0, aff < 1.
In this case we may choose b > 0 such that

-b<a<@<, -1/b<B<B<0
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T fz>0
Define 9(z) = { blz| if z < 0.

By case (b) if £ < —M},,
[ 9P, dy) < (1/ra)a(z) —e.

On the other hand, choose rs > 1 such that —(1/r5)(1/b) <
We may have 0,03 > 0, with < 6; which satisfy

—1/b<f—-0<B+0<0, —(1/rs)(1/b)+65<B.

Now choose M4 > 0 such that for z > My,

[9wP@dy) < C+(B8-0)(-2)
< C+b(1rs)(1/b) — 0)z + 2).
There exists My, > M, such that for z > M,

/g (z,dy) < (1/rs)g(z) — ¢

Now let M = max{M,, M{,, My, Mj,, Mj,}. If we take r = min{r; : 1

i <5}, B=[-M,M], then for each case, we have

/g (z,dy) < (1/r)g(z) — ¢, z € B°

which concludes our proof.

Remark 2.6. Another type of sufficient conditions for geometric ergodicity

of {X,} can be found on page 128, Tong(1990).

3. FUNCTIONAL CENTRAL LIMIT THEOREM

In this section, we let {X,,} be the Markov process generated by (1.2) which
satisfies the assumptions on theorem 2.5 with = as its invariant initial distri-

bution.
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It is known that {X,} with Xo ~ = becomes a stationary ergodic Markov
process (see [Breiman (1968)]).

Our aim is to obtain the functional central limit theorems for

[nt]

Ya(t) = n_1/2 (X;) - /hdw 0<t<oo (3.1)
for a class of functions h in LZ(R, 7) where [nt] denotes the integer part of nt.

The process defined by (3.1) takes values in the space D[0,00) of real-
valued right continuous function on D[0,00) , having left hand limits with the
Skorohod topology. The distribution of Y, is then a probablity measure on the
Borel o-field of D[0, c0) and its convergence in distribution to a Brownian mo-
tion means the weak convergence of this sequence of distributions to a Wiener
measure.

The transition operator T on L%(R, ) is defined by

= [hw)P(,dy),  he LX(Rm).

Then (T7h /h P™(z,dy),  he L¥R,7).
Let I be the identity operator. Write & = [ hdr. || - || denotes the L?—norm
in L*(R, 7).

Therorem 3.1. If {X,} is geometrically ergodic, there exists positive
p < 1 such that

[ (@) 1l P, ) = 7(-) 1| = O(6")(n — o0).
Proof. See [Nummelin and Touminen (1982)]

Let B(R) be the linear space of all real-valued bounded measurable functions

on R.

Theorem 3.2. For every h € B(R), the process Y, in (3.1) converges in



ASYMPTOTICS OF A CLASS OF MARKOV PROCESSES

distribution to a Brownian motion with mean zero and variance parameter
lgll2=1ITgll3 where (T — I)g = h — k.

Proof. Suppose h € B(R) with A(z) < B,z € R,0 < B < 00, and take

~S Tk —F). (3.2)

If we apply T on both side of (3.2), then we have (T — I)g = h — h.
Moreover,

1T h=P1E = [([h@)P,dy) ~ [ byie(ay)) = (da)
(B0 P9, ) = =()ll) = (da)

Since {X,} is geometrically ergodic, there exist positive p < 1, measurable
function M so that M < oo, - a.e. and || P*(z,-) —n(-) || £ M(z)p™ as
n — 0o. Moreover by the theorem 3.1,

[ (@) PPz, )= x(-) [ SO(p")  asn — oo

IA

Therefore for sufficiently large n, we have

NT*(h=R)[l; < 2192/7r(d110) | PO (z,-) —(-) |l
< 2B*Kp" for some 0 < K < oo,

which implies »_ || T7"(h — &) || < oo, and hence h — h belongs to the range
n=0
of T-1.

n

S (h(X)-F) = 3(Ty(X,)—9(X;)

=0

n+1
= E_Z(Tg(X 1) — 9(X;)) + (9(Xn41) — 9(Xo)).

.

Since {T'g(X;-1) — g(X;) : j = 0)} is a stationary ergodic sequence of mar-
tingale differences, the functional central limit theorem follows (see [Billings-
ley(1968)], [Gordin and Lifsic(1978)]). The variance parameter of the limiting
Brownian motion is E(T¢(X;-1) — ¢(X;))* =1l g 113 =1| Tg ||3.

11
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