• Title/Summary/Keyword: Function Point Method

Search Result 1,517, Processing Time 0.029 seconds

Function Point Analysis using Goal and Scenario based Requirements (목표 및 시나리오 기반 요구사항을 이용한 기능점수 분석)

  • Choi Soon-Hwang;Kim Jin-Tae;Park Soo-Yong;Han Ji-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.8
    • /
    • pp.655-667
    • /
    • 2006
  • This paper proposes a method for counting function point using goal and scenario based requirements. Function Point is a software sizing method and widely used as a basis to estimate software development cost. Requirements elicitation and analysis should be performed before function point analysis but function point analysis method doesn't deal with requirements elicitation and analysis. For that reason, Function point extraction method from existing requirements method is needed and if the requirements method has advantage for traceability and elicitation, it is suitable for managing cost. Goal and scenario method is widely used as requirements elicitation and analysis. It has also good traceability. Therefore, this paper discusses a method for extracting function point from requirements text gathered using the goal and scenario based requirements elicitation technique. The proposed method aims to establish and maintain traceability between function point and requirements text. Text based function point extraction guidance rules have been developed. The proposed methodology has been applied to Order Processing System development.

A Study on Estimating Function Point Count of Domestic Software Development Projects (국내 소프트웨어 개발사업에 적합한 기능점수규모 예측방법에 관한 연구)

  • 박찬규;신수정;이현옥
    • Korean Management Science Review
    • /
    • v.20 no.2
    • /
    • pp.179-196
    • /
    • 2003
  • Function point model is the international standard method to measure the software size which is one of the most important factors to determine the software development cost. Function point model can successfully be applied only when the detailed specification of users' requirements is available. In the domestic public sector, however, the budgeting for software projects is carried out before the requirements of softwares ere specified in detail. Therefore, an efficient function point estimation method is required to apply function point model at the early stage of software development projects. The purpose of this paper is to compare various function point estimation methods and analyse their accuracies in domestic software projects. We consider four methods : NESMA model, ISBSG model, the simplified function point model and the backfiring method. The methods are applied to about one hundred of domestic projects, and their estimation errors are compared. The results can used as a criterion to select an adequate estimation model for function point counts.

A Systematical Method or Counting Function Point From Requirements (요구사항으로부터 기능점수를 측정하기 위한 체계적인 방법)

  • Yang, Won-Seok;Park, Su-Yong;Choe, Sun-Hwang;Jeong, Chang-Hae;Hwang, Man-Su
    • 시스템엔지니어링워크숍
    • /
    • s.4
    • /
    • pp.182-187
    • /
    • 2004
  • Our research proposes how to, systematically, count function point from initial functional requirements based on natural language. Gradually, Function Point Analysis is used to overcome the limitation of LOC(Line Of Code) for estimating software size. Moreover, it plays an important role in cost management. Function point is derived from initial requirements and is determined by experts who have an education for function point. However, currently there are few researches to cout function point by systematic or automatic rules. Through extending our porposed method, we expect that function point is able to be counted automatically or semi-automatically. This would be our future research

  • PDF

An improvement of software sizing and cost estimation model with function point methods (기능 점수를 이용한 소프트웨어 규모 및 비용산정 방안에 관한 연구)

  • 김현수
    • Korean Management Science Review
    • /
    • v.14 no.1
    • /
    • pp.131-149
    • /
    • 1997
  • Software cost estimation is an important both for buyers and sellers(developers). We reviewed domestic and foreign researches and practices on software cost estimation with function point method comprehensively, In this paper, we derived four promising alternative function point models. They are an IFPUG(International Function Point User Group)-based model(Model I), a shorthand model for client/sever software systems(Model II), a data-oricnted model for relatively large software projects(Model III), and a general- purpose function point model for non business application softwares as well as business applications(Model IV). Empirical data shows that Model I, II, and IV are very useful function point models. In particular, model II and IV look very useful models since they are concise and accurate. These models can be incorporated in a new improved guideline for software cost estimation. General opinion survey shows that Model I, II and IV are preferable. There are no significant differences in preference between buyers and sellers. The survey also shows that users think function point method is better than step(line of code)-oriented cost estimation methods in many ways including objectivity and estimation accuracy.

  • PDF

Function Approximation Using an Enhanced Two-Point Diagonal Quadratic Approximation (개선된 이점 대각 이차 근사화를 이용한 함수 근사화)

  • Kim, Jong-Rip;Kang, Woo-Jin;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.475-480
    • /
    • 2004
  • Function approximation is one of the most important and active research fields in design optimization. Accurate function approximations can reduce the repetitive computational effort fur system analysis. So this study presents an enhanced two-point diagonal quadratic approximation method. The proposed method is based on the Two-point Diagonal Quadratic Approximation method. But unlike TDQA, the suggested method has two quadratic terms, the diagonal term and the correction term. Therefore this method overcomes the disadvantage of TDQA when the derivatives of two design points are same signed values. And in the proposed method, both the approximate function and derivative values at two design points are equal to the exact counterparts whether the signs of derivatives at two design points are the same or not. Several numerical examples are presented to show the merits of the proposed method compared to the other forms used in the literature.

A New Method of Finding Real Roots of Nonlinear System Using Extended Fixed Point Iterations (확장된 고정점이론을 이용한 비선형시스템의 근을 구하는 방법)

  • Kim, Sung-Soo;Kim, Ji-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.277-284
    • /
    • 2018
  • In this paper, a new numerical method of finding the roots of a nonlinear system is proposed, which extends the conventional fixed point iterative method by relaxing the constraints on it. The proposed method determines the real valued roots and expands the convergence region by relaxing the constraints on the conventional fixed point iterative method, which transforms the diverging root searching iterations into the converging iterations by employing the metric induced by the geometrical characteristics of a polynomial. A metric is set to measure the distance between a point of a real-valued function and its corresponding image point of its inverse function. The proposed scheme provides the convenience in finding not only the real roots of polynomials but also the roots of the nonlinear systems in the various application areas of science and engineering.

AN ELIGIBLE PRIMAL-DUAL INTERIOR-POINT METHOD FOR LINEAR OPTIMIZATION

  • Cho, Gyeong-Mi;Lee, Yong-Hoon
    • East Asian mathematical journal
    • /
    • v.29 no.3
    • /
    • pp.279-292
    • /
    • 2013
  • It is well known that each kernel function defines a primal-dual interior-point method(IPM). Most of polynomial-time interior-point algorithms for linear optimization(LO) are based on the logarithmic kernel function([2, 11]). In this paper we define a new eligible kernel function and propose a new search direction and proximity function based on this function for LO problems. We show that the new algorithm has ${\mathcal{O}}((log\;p){\sqrt{n}}\;log\;n\;log\;{\frac{n}{\epsilon}})$ and ${\mathcal{O}}((q\;log\;p)^{\frac{3}{2}}{\sqrt{n}}\;log\;{\frac{n}{\epsilon}})$ iteration bound for large- and small-update methods, respectively. These are currently the best known complexity results.

AN ELIGIBLE KERNEL BASED PRIMAL-DUAL INTERIOR-POINT METHOD FOR LINEAR OPTIMIZATION

  • Cho, Gyeong-Mi
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.235-249
    • /
    • 2013
  • It is well known that each kernel function defines primal-dual interior-point method (IPM). Most of polynomial-time interior-point algorithms for linear optimization (LO) are based on the logarithmic kernel function ([9]). In this paper we define new eligible kernel function and propose a new search direction and proximity function based on this function for LO problems. We show that the new algorithm has $\mathcal{O}(({\log}\;p)^{\frac{5}{2}}\sqrt{n}{\log}\;n\;{\log}\frac{n}{\epsilon})$ and $\mathcal{O}(q^{\frac{3}{2}}({\log}\;p)^3\sqrt{n}{\log}\;\frac{n}{\epsilon})$ iteration complexity for large- and small-update methods, respectively. These are currently the best known complexity results for such methods.

Fixed-point Iteration for the Plastic Deformation Analysis of Anisotropic Materials (이방성 재료의 소성변형 해석을 위한 고정점 축차)

  • Seung-Yong Yang;Jeoung Han Kim
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.29-34
    • /
    • 2023
  • A fixed-point iteration is proposed to integrate the stress and state variables in the incremental analysis of plastic deformation. The Conventional Newton-Raphson method requires a second-order derivative of the yield function to generate a complicated code, and the convergence cannot be guaranteed beforehand. The proposed fixed-point iteration does not require a second-order derivative of the yield function, and convergence is ensured for a given strain increment. The fixed-point iteration is easier to implement, and the computational time is shortened compared with the Newton-Raphson method. The plane-stress condition is considered for the biaxial loading conditions to confirm the convergence of the fixed-point iteration. 3-dimensional tensile specimen is considered to compare the computational times in the ABAQUS/explicit finite element analysis.

Nonparametric Detection of a Discontinuity Point in the Variance Function with the Second Moment Function

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.3
    • /
    • pp.591-601
    • /
    • 2005
  • In this paper we consider detection of a discontinuity point in the variance function. When the mean function is discontinuous at a point, the variance function is usually discontinuous at the point. In this case, we had better estimate the location of the discontinuity point with the mean function rather than the variance function. On the other hand, the variance function only has a discontinuity point. The target function in order to estimate the location can be used the second moment function since the variance function and the second moment function have the same location and jump size of the discontinuity point. We propose a nonparametric detection method of the discontinuity point with the second moment function. We give the asymptotic results of these estimators. Computer simulation demonstrates the improved performance of the method over the existing ones.

  • PDF