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AN ELIGIBLE KERNEL BASED PRIMAL-DUAL

INTERIOR-POINT METHOD FOR LINEAR

OPTIMIZATION

Gyeong-Mi Cho

Abstract. It is well known that each kernel function defines a
primal-dual interior-point method (IPM). Most of polynomial-time
interior-point algorithms for linear optimization (LO) are based on
the logarithmic kernel function ([9]). In this paper we define a
new eligible kernel function and propose a new search direction
and proximity function based on this function for LO problems.

We show that the new algorithm has O((log p)
5
2
√
n logn log n

ε
) and

O(q
3
2 (log p)3√n log n

ε
) iteration complexity for large- and small-

update methods, respectively. These are currently the best known
complexity results for such methods.

1. Introduction

In this paper we propose a new primal-dual IPM for the following
standard LO problem

(1.1) min{cTx : Ax = b, x ≥ 0},
where A ∈ Rm×n with rank(A) = m, c, x ∈ Rn, b ∈ Rm, and its dual
problem

(1.2) max{bT y : AT y + s = c, s ≥ 0},
where y ∈ Rm and s ∈ Rn.

Since Karmarkar’s paper ([5]) in 1984, interior-point methods (IPMs)
have shown their efficiency in solving large-scale LO problems with a
wide variety of successful applications. In this paper, we propose a new
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primal-dual IPM based on an eligible kernel function. It is generally
agreed that the iteration complexity of the algorithm is an appropriate
measure for its efficiency.

Peng et al. ([7]) proposed new variants of IPMs based on self-regular
kernel functions and obtained the best known complexity results for
large- and small-update methods for LO with a specific self-regular ker-
nel function and extended to more general optimization problems. Re-
cently, Roos et al. ([1, 3]) proposed new primal-dual IPMs for LO prob-
lems based on eligible kernel functions and obtained the best known
complexity results of large- and small-update methods. They also pro-
posed the framework for analyzing the algorithm based on four condi-
tions on kernel function and generalized those methods to the general
optimization problem ([4]).

Motivated by their works, in this paper, we define a new kernel func-
tion which includes the kernel function in [2] as a special case and pro-
pose a new primal-dual IPM for LO problems based on this function
and improves the complexity result of [2] for large-update method. For
the complexity analysis we follow the framework in [2]. We show that

the algorithm has O((log p)
5
2
√
n log n log n

ε ) and O(q
3
2 (log p)3√n log n

ε )
iteration complexity for large- and small-update methods, respectively,
where p ≥ e, q ≥ 1, ε is a desired accuracy, and n is a dimension of the
problem. These bounds are currently the best known complexity results
for such methods.

The paper is organized as follows. In Section 2, we recall the generic
IPM. In Section 3, we define a new kernel function and give its properties
which are essential for the complexity analysis. In Section 4, we propose
the new algorithm and derive the complexity result for both large- and
small-update methods. Finally, concluding remarks are given in Section
5.

We use the following notations throughout the paper. Rn
+ and Rn

++

denote the set of n-dimensional nonnegative and positive vectors, re-
spectively. For x, s ∈ Rn, xmin and xs denote the smallest component
of the vector x and the componentwise product of the vectors x and
s, respectively. We denote X the diagonal matrix from a vector x,
i.e. X = diag(x). e denotes the n-dimensional vector of ones and e,
the Euler’s number. For notational convenience we denote the natu-
ral logarithm by log. For f(x), g(x) : R++ → R++, f(x) = O(g(x))
if f(x) ≤ c1g(x) for some positive constant c1 and f(x) = Θ(g(x)) if
c2g(x) ≤ f(x) ≤ c3g(x) for some positive constants c2 and c3.
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2. Preliminaries

In this section, we recall the basic concepts and propose the generic
algorithm. Without loss of generality, we assume that both problem
(1.1) and (1.2) satisfy the interior-point condition (IPC) ([8]), i.e. there
exists (x0, y0, s0) such that

Ax0 = b, x0 > 0, AT y0 + s0 = c, s0 > 0.

By the duality theorem (Theorem II.2 in [8]), finding an optimal solution
of problem (1.1) and (1.2) is equivalent to solving the following system:

(2.1) Ax = b, x ≥ 0, AT y + s = c, s ≥ 0, xs = 0.

The basic idea of primal-dual IPMs is to replace the third equation
in (2.1) by the parameterized equation xs = µe with µ > 0. Now we
consider the following system:

(2.2) Ax = b, x > 0, AT y + s = c, s > 0, xs = µe.

If the IPC holds, then the system (2.2) has a unique solution for each µ >
0 ([6]). We denote this solution as (x(µ), y(µ), s(µ)) and call x(µ) the µ-
center of (1.1) and (y(µ), s(µ)) the µ-center of (1.2). The set of µ-centers
(µ > 0) is the central path of (1.1) and (1.2). The limit of the central
path (as µ goes to zero) exists and since the limit point satisfies (2.1), it
naturally yields optimal solutions for (1.1) and (1.2) ([8]). Primal-dual
IPMs follow the central path approximately and approach the solution
of (1.1) and (1.2) as µ goes to zero.

For given (x, y, s) := (x0, y0, s0) by applying Newton’s method to the
system (2.2) we have the following Newton system

(2.3) A∆x = 0, AT∆y + ∆s = 0, s∆x+ x∆s = µe− xs.
Since A has full row rank, the system (2.3) has a unique search direc-
tion vector (∆x,∆y,∆s). By taking a step along the search direction
(∆x,∆y,∆s), one constructs a new iteration (x+, y+, s+) with

x+ := x+ α∆x, y+ := y + α∆y, s+ := s+ α∆s,

for some α > 0.
For the motivation of the new algorithm we define the scaled vectors

as follows:

(2.4) v :=

√
xs

µ
, dx :=

v∆x

x
, ds :=

v∆s

s
.

Using (2.4), we can rewrite the system (2.3) as follows:

(2.5) Ādx = 0, ĀT∆y + ds = 0, dx + ds = v−1 − v,
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where Ā := 1
µAV

−1X, V := diag(v), and X := diag(x). Note that the

right hand side of the third equation in (2.5) equals the negative gradient
of the logarithmic barrier function Ψl(v), i.e.

(2.6) dx + ds = −∇Ψl(v),

where

Ψl(v) :=
n∑
i=1

ψl(vi) =
n∑
i=1

(
v2
i − 1

2
− log vi

)
.

We call ψl the kernel function of the logarithmic barrier function Ψl(v).
We call ψ : R++ → R+ a kernel function if ψ is twice differentiable and
satisfies the following conditions:

(2.7) ψ′(1) = ψ(1) = 0, ψ′′(t) > 0, ∀t > 0, lim
t→0+

ψ(t) = lim
t→∞

ψ(t) =∞.

For a kernel function ψ(t), we define Ψ(v) :=
∑n

i=1 ψ(vi). In this paper
we replace Ψl(v) in (2.6) by Ψ(v).
Note that dx and ds are orthogonal because the vector dx belongs to
null space and ds to the row space of the matrix Ā. Since dx and ds are
orthogonal, we have

dx = ds = 0 ⇔ ∇Ψ(v) = 0 ⇔ v = e

⇔ Ψ(v) = 0 ⇔ x = x(µ), s = s(µ).

We use Ψ(v) as the proximity function which measures the distance
between current iteration and corresponding µ-center. Also, we define
the norm-based proximity measure δ(v) as follows: for v ∈ Rn

++,

(2.8) δ(v) :=
1

2
||∇Ψ(v)|| = 1

2
||dx + ds||.

The generic IPM works as follows: Assume that we are given a strictly
feasible point (x, y, s) which is in a τ -neighborhood of the given µ-center.
Then we decrease µ to µ+ := (1−θ)µ, for some fixed θ ∈ (0, 1) and then
we solve the Newton system (2.3) to obtain the unique search direction.
The positivity condition of a new iteration is ensured with the right
choice of the step size α which is defined by some line search rule. This
procedure is repeated until we find a new iteration (x+, y+, s+) that
is in a τ -neighborhood of the µ+-center and then we let µ := µ+ and
(x, y, s) := (x+, y+, s+). Then µ is again reduced by the factor 1− θ and
we solve the Newton system targeting at the new µ+-center, and so on.
This process is repeated until µ is small enough, i.e. nµ < ε.
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Generic Primal-Dual Algorithm for LO

Input:
a threshold parameter τ ≥ 1;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
(x0, s0) and µ0 := 1 such that Ψl(x

0, s0, µ0) ≤ τ.
begin
x := x0; s := s0; µ := µ0;
while nµ ≥ ε do
begin
µ := (1− θ)µ;
while Ψl(v) > τ do
begin
Solve the system (2.3) for ∆x,∆y,∆s,
Determine a step size α;
x := x+ α∆x;
s := s+ α∆s;
y := y + α∆y;

v :=
√

xs
µ ;

end
end
end

Remark 2.1. If θ is a constant independent of the dimension of
the problem n, e.g. θ = 1

2 , then we call the algorithm a large-update

method. If θ depends on n, e.g. θ = 1√
n

, then the algorithm is called a

small-update method.

3. The kernel function

In this section, we define a new kernel function and give its properties
which are essential to the complexity analysis.
Consider a function ψ(t) as follows:

(3.1) ψ(t) =
(log p)(t2 − 1)

2
+

1

q
(pq(

1
t
−1) − 1), p ≥ e, q ≥ 1, t > 0.
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Then we have the following:

(3.2)

ψ′(t) = (log p)t− (log p)t−2pq(
1
t
−1),

ψ′′(t) = (log p) + (log p)t−4(q(log p) + 2t)pq(
1
t
−1),

ψ(3)(t) = −(log p)t−6(q2(log p)2 + 6q(log p)t+ 6t2)pq(
1
t
−1).

From (3.2) and (2.7), ψ(t) is a kernel function and for p ≥ e, q ≥ 1,

(3.3) ψ′′(t) > 1, t > 0.

When q = 1 and p = e, ψ(t) is a kernel function in [2].

Lemma 3.1. For ψ(t) as in (3.1), we have for p ≥ e and q ≥ 1,
(i) tψ′′(t) + ψ′(t) > 0, t > 0, i.e. ψ(t) is exponentially convex for t > 0,

(ii) ψ(3)(t) < 0, t > 0,
(iii) tψ′′(t)− ψ′(t) > 0, t > 0,

(iv) 2(ψ′′(t))2 − ψ′(t)ψ(3)(t) > 0, t > 0.

Proof: For (i), using (3.2), we have for p ≥ e, q ≥ 1 and t > 0,

tψ
′′
(t) + ψ

′
(t) = 2(log p)t+ (log p)t−3(q(log p) + t)pq(

1
t
−1) > 0.

Hence ψ(t) is exponentially convex, t > 0.

For (ii), from (3.2), ψ(3)(t) < 0.
For (iii), using (3.2), we have

tψ′′(t)− ψ′(t) = (log p)t−3(q(log p) + 3t)pq(
1
t
−1) > 0, t > 0.

For (iv), using (3.2), we have for t > 0,

2(ψ′′(t))2 − ψ′(t)ψ(3)(t)

= (log p)2t−8
(
2t8 + (14t2 + 10q(log p)t+ q2(log p)2

)
t3pq(

1
t
−1)

+
(
2t2 + 2q(log p)t+ q2(log p)2

)
p2q( 1

t
−1)) > 0.

This completes the proof. �

Note that we call ψ(t) an eligible function if ψ(t) satisfies four conditions
of Lemma 3.1.

Remark 3.2. (i) By Lemma 2.4 in [2], if ψ(t) satisfies Lemma 3.1
(ii) and (iii), then ψ(t) satisfies

ψ
′′
(t)ψ

′
(βt)− βψ′(t)ψ′′(βt) > 0, t > 1, β > 1.

(ii) By Lemma 2.1.2 in [7], Lemma 3.1 (i) is equivalent to

(3.4) ψ(
√
t1t2) ≤ 1

2
(ψ(t1) + ψ(t2)), t1 > 0, t2 > 0.
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Lemma 3.3. For ψ(t) with p ≥ e and q ≥ 1, we have
(i) 1

2(t− 1)2 ≤ ψ(t) ≤ 1
2(ψ′(t))2, t > 0,

(ii) ψ(t) ≤ (log p)(3+q log p)
2 (t− 1)2, t ≥ 1,

(iii) ψ(t) ≤ log p
2 (t2 − 1), t ≥ 1.

Proof: For (i), using the first condition of (2.7) and (3.3), we have

ψ(t) =

∫ t

1

∫ ξ

1
ψ′′(ζ)dζdξ ≥

∫ t

1

∫ ξ

1
dζdξ =

1

2
(t− 1)2

which proves the first inequality. The second inequality is obtained as
follows:

ψ(t) =

∫ t

1

∫ ξ

1
ψ′′(ζ)dζdξ ≤

∫ t

1

∫ ξ

1
ψ′′(ξ)ψ′′(ζ)dζdξ

=

∫ t

1
ψ′′(ξ)ψ′(ξ)dξ =

∫ t

1
ψ′(ξ)dψ′(ξ) =

1

2
(ψ′(t))2.

For (ii), using Taylor’s Theorem, ψ(1) = ψ
′
(1) = 0, ψ(3) < 0, and

ψ
′′
(1) = (log p)(3 + q log p), we have for p ≥ e, q ≥ 1 and t ≥ 1,

ψ(t) = ψ(1) + ψ
′
(1)(t− 1) +

1

2
ψ
′′
(1)(t− 1)2 +

1

3!
ψ(3)(ξ)(t− 1)3

=
1

2
ψ
′′
(1)(t− 1)2 +

1

3!
ψ(3)(ξ)(t− 1)3

≤ 1

2
ψ
′′
(1)(t− 1)2 =

(log p)(3 + q log p)

2
(t− 1)2,

for some ξ, 1 ≤ ξ ≤ t.
For (iii), by the definition of ψ(t), ψ(t) ≤ log p

2 (t2 − 1), t ≥ 1. This
completes the proof. �

Let % : [0,∞) → [1,∞) be the inverse function of ψ(t) for t ≥ 1 and

ρ : [0,∞) → (0, 1], the inverse function of −1
2ψ
′
(t) for t ∈ (0, 1]. Then

we have the following lemma.

Lemma 3.4. For ψ(t) with p ≥ e, q ≥ 1, we have
(i) %(s) ≤ 1 +

√
2s, s ≥ 0,

(ii) ρ(z) ≥ log p

(log p)+q−1 log( 2z+log p
log p

)
, z ≥ 0.

Proof: For (i), using Lemma 3.3 (i), we have s = ψ(t) ≥ (t−1)2

2 . Then
we have

t = %(s) ≤ 1 +
√

2s, s ≥ 0.
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For (ii), let z = −1
2ψ
′(t), for all t ∈ (0, 1]. Then by the definition of ρ,

ρ(z) = t, t ∈ (0, 1] and 2z = −ψ′(t). So we have 2z = (log p)t−2p q( 1
t
−1)−

(log p)t.

p q( 1
t
−1) ≤ 2z + log p

log p
, p ≥ e, 0 < t ≤ 1.

Hence we have

ρ(z) = t ≥ log p

(log p) + q−1 log(2z+log p
log p )

, z ≥ 0. �

4. Complexity analysis

In this section, we compute a growth bound due to the update of
the barrier parameter during an outer iteration, a default step size and
the decrease of the proximity function during an inner iteration and
give the complexity results of the algorithm. In this paper, we replace
the logarithmic barrier function Ψl(v) in (2.6) with the eligible barrier
function Ψ(v) as follows:

(4.1) dx + ds = −∇Ψ(v),

where Ψ(v) =
∑n

i=1 ψ(vi), where ψ(t) is defined in (3.1).
Using Remark 3.2 (i), we have the following lemma. The reader can
refer to Theorem 3.2 in [2] for the proof.

Lemma 4.1. Let % : [0,∞)→ [1,∞) be the inverse function of ψ(t),
t ≥ 1. Then we have

Ψ(βv) ≤ nψ
(
β%

(
Ψ(v)

n

))
, v ∈ R++, β ≥ 1.

In the following theorem we obtain an estimate for the effect of a µ-
update on the value of Ψ(v).

Theorem 4.2. Let 0 ≤ θ < 1 and v+ = v√
1−θ . If Ψ(v) ≤ τ, then we

have
(i) Ψ(v+) ≤ (log p)(3+q log p)

2(1−θ)
(√
nθ +

√
2τ
)2
,

(ii) Ψ(v+) ≤ log p
2(1−θ)(2τ + 2

√
2τn+ θn).

Proof: For (i), since 1√
1−θ ≥ 1 and %

(
Ψ(v)
n

)
≥ 1, we have

%
(

Ψ(v)
n

)
√

1−θ ≥ 1.

Using Lemma 4.1 with β = 1√
1−θ , Lemma 3.3 (ii), Lemma 3.4 (i), and
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Ψ(v) ≤ τ , we have

Ψ(v+) ≤ nψ

%
(

Ψ(v)
n

)
√

1− θ


≤ n(log p)(3 + q log p)

2

%
(

Ψ(v)
n

)
−
√

1− θ
√

1− θ

2

≤ n(log p)(3 + q log p)

2

1 +
√

2τ
n −
√

1− θ
√

1− θ

2

≤ (log p)(3 + q log p)

2(1− θ)

(√
nθ +

√
2τ
)2
,

where the last inequality holds from 1−
√

1− θ = θ
1+
√

1−θ ≤ θ, 0 ≤ θ < 1.

For (ii), using Lemma 4.1, Lemma 3.4 (i), Ψ(v) ≤ τ , and Lemma 3.3
(iii),

Ψ(v+) ≤ nψ

%
(

Ψ(v)
n

)
√

1− θ

 ≤ nψ
1 +

√
2τ
n√

1− θ


≤ log p

2(1− θ)
(2τ + 2

√
2τn+ θn).

This completes the proof. �

Denote

Ψ̃0 =
(3 + q log p) log p

2(1− θ)

(√
nθ +

√
2τ
)2
,

Ψ̄0 =
(2τ + 2

√
2τn+ θn) log p

2(1− θ)
.

(4.2)

We will use Ψ̃0 and Ψ̄0 as upper bounds of small- and large-update
methods for Ψ(v) during the process of the algorithm. We define the
value of Ψ(v) after the µ-update as Ψ0 and the subsequent values in the
same outer iteration are denoted as Ψk, k = 1, 2, · · · . Then we have

Ψ0 ≤ min{Ψ̃0, Ψ̄0}.
Let K denote the total number of inner iterations per outer iteration.
Then we have

ΨK−1 > τ, 0 ≤ ΨK ≤ τ.
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Remark 4.3. For small-update method with τ = O(1) and θ =

Θ( 1√
n

), Ψ̃0 = O(q(log p)2) and for large-update method with τ = O(n)

and θ = Θ(1), Ψ̄0 = O((log p)n).

In the following we compute a default step size.
For fixed µ, if we take a step size α, then we have new iterations x+ :=
x+ α∆x, s+ := s+ α∆s. Using (2.4), we have

x+ = x

(
e+ α

∆x

x

)
= x

(
e+ α

dx
v

)
=
x

v
(v + αdx)

and

s+ = s

(
e+ α

∆s

s

)
= s

(
e+ α

ds
v

)
=
s

v
(v + αds).

Thus we have

v+ :=

√
x+s+

µ
=
√

(v + αdx)(v + αds).

Define for α > 0,
f(α) := Ψ(v+)−Ψ(v).

Then f(α) is the difference of proximities between a new iteration and
a current iteration for fixed µ. From (3.4), we have

Ψ(v+) = Ψ
(√

(v + αdx)(v + αds)
)
≤ 1

2
(Ψ(v + αdx) + Ψ(v + αds)) .

Hence we have f(α) ≤ f1(α), where

(4.3) f1(α) :=
1

2
(Ψ(v + αdx) + Ψ(v + αds))−Ψ(v).

Obviously, we have
f(0) = f1(0) = 0.

By taking the derivative of f1(α) with respect to α, we have

f ′1(α) =
1

2

n∑
i=1

(
ψ′(vi + α[dx]i)[dx]i + ψ′(vi + α[ds]i)[ds]i

)
,

where [dx]i and [ds]i denote the ith components of the vectors dx and
ds, respectively. Using (4.1) and (2.8), we have

f ′1(0) =
1

2
∇Ψ(v)T (dx + ds) = −1

2
∇Ψ(v)T∇Ψ(v) = −2(δ(v))2.

Differentiating f ′1(α) with respect to α, we have

(4.4) f ′′1 (α) =
1

2

n∑
i=1

(
ψ′′(vi + α[dx]i)[dx]2i + ψ′′(vi + α[ds]i)[ds]

2
i

)
.
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Since f ′′1 (α) > 0, f1(α) is strictly convex in α unless dx = ds = 0.

Lemma 4.4. Let δ(v) be as defined in (2.8). Then we have

δ(v) ≥
√

Ψ(v)

2
.

Proof: Using Lemma 3.3 (i), we have

Ψ(v) =

n∑
i=1

ψ(vi) ≤
1

2

n∑
i=1

(
ψ′(vi)

)2
=

1

2
||∇Ψ(v)||2 = 2δ2(v).

Hence we have δ(v) ≥
√

Ψ(v)
2 . �

For notational convenience we denote δ := δ(v) and Ψ := Ψ(v).

Lemma 4.5. (Lemma 4.2 in [2]) If the step size α satisfies the in-
equality

(4.5) −ψ′(vmin − 2αδ) + ψ′(vmin) ≤ 2δ,

then we have

f ′1(α) ≤ 0.

Lemma 4.6. (Lemma 4.3 in [2]) Let ρ : [0,∞) → (0, 1] denote the
inverse function of −1

2ψ
′(t) for all t ∈ (0, 1]. Then, in the worst case, the

largest step size α̂ satisfying (4.5) is given by

α̂ :=
1

2δ
(ρ(δ)− ρ(2δ)).

Lemma 4.7. (Lemma 4.4 in [2]) Let ρ and α̂ be as defined in Lemma
4.6. Then we have

α̂ ≥ 1

ψ′′(ρ(2δ))
.

Define

(4.6) ᾱ :=
1

ψ′′(ρ(2δ))
.

Then ᾱ ≤ α̂ and we will use ᾱ as the default step size.

In the following we compute the decrement of the proximity function
during an inner iteration.
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Lemma 4.8. (Theorem 4.6 in [2]) Let ᾱ be as defined in (4.6). Then
we have

(4.7) f(ᾱ) ≤ − δ2

ψ′′(ρ(2δ))
.

By Lemma 3.1 (iv), we have the following lemma.

Lemma 4.9. (Lemma 4.7 in [2]) The right-hand side of (4.7) is mono-
tonically decreasing in δ.

Theorem 4.10. Let ᾱ be as defined in (4.6) and τ ≥ 1. Then

f(ᾱ) ≤ −
√

Ψ

2(log p)

(
1 + 3q(log p)(1 + 2

√
2)
(

1 + 1
q log p log

(
2
√

2Ψ0+log p
log p

))4
) .

Proof: Using Lemma 4.8, Lemma 4.9 and Lemma 4.4, we have

f(ᾱ) ≤ − δ2

ψ′′(ρ(2δ))
≤ −1

2

Ψ

ψ′′(ρ(
√

2Ψ))
.(4.8)

Since Ψ ≥ τ ≥ 1, 1+2
√

2Ψ ≤ (1+2
√

2)
√

Ψ. By Lemma 3.4 (ii), Lemma
3.1 (ii), (3.2), p ≥ e and q ≥ 1,

ψ′′(ρ(
√

2Ψ)) ≤ ψ′′
 q log p

q log p+ log
(

2
√

2Ψ+log p
log p

)


≤ (log p) + 3q(log p)2

(
1 +

1

q log p
log

(
2
√

2Ψ + log p

log p

))4

(1 + 2
√

2)Ψ

≤ (log p)

(
1 + 3q(log p)(1 + 2

√
2)

(
1 +

1

q log p
log

(
2
√

2Ψ + log p

log p

))4
)

Ψ
1
2 .

Using (4.8) and Ψ ≤ Ψ0, we have

f(ᾱ)

≤ − Ψ

2(log p)

(
1 + 3q(log p)(1 + 2

√
2)
(

1 + 1
q log p log

(
2
√

2Ψ+log p
log p

))4
)

Ψ
1
2

≤ −
√

Ψ

2(log p)

(
1 + 3q(log p)(1 + 2

√
2)
(

1 + 1
q log p log

(
2
√

2Ψ0+log p
log p

))4
) .

This completes the proof. �

In the following we compute the complexity bounds of the algorithm.
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Lemma 4.11. (Lemma 1.3.2 in [7]) Let t0, t1, · · ·, tK̄ be a sequence
of positive numbers such that

tk+1 ≤ tk − γt1−β̃k , k = 0, 1, · · ·, K̄ − 1,

where γ > 0 and 0 < β̃ ≤ 1. Then K̄ ≤
⌊

tβ̃0
γβ̃

⌋
.

Lemma 4.12. Let K be the total number of inner iterations in an
outer iteration. Then we have

K ≤ 4(log p)

(
1 + 3q(log p)(1 + 2

√
2)

(
1 +

1

q log p
log

(
2
√

2Ψ0 + log p

log p

))4
)

Ψ
1
2
0 .

Proof: Using Theorem 4.10 and Lemma 4.11 with

1

γ
:= 2(log p)

1 + 3q(log p)(1 + 2
√

2)

1 +
log
(

2
√

2Ψ0+log p
log p

)
q log p

4
 ,

1

β̃
:= 2,

we have

K ≤ 4(log p)

(
1 + 3q(log p)(1 + 2

√
2)

(
1 +

1

q log p
log

(
2
√

2Ψ0 + log p

log p

))4
)

Ψ
1
2
0 .

This completes the proof. �

Theorem 4.13. Let a LO problem be given and τ ≥ 1. Then the
total number of iterations to have an approximate solution with nµ < ε
is bounded by

4(log p)

(
1 + 3q(log p)(1 + 2

√
2)
(

1 + 1
q log p log

(
2
√

2Ψ0+log p
log p

))4
)

θ
Ψ

1
2
0 log

n

ε

 .
Proof: If the central path parameter µ has the initial value µ0 := 1 and
is updated by multiplying 1− θ with 0 ≤ θ < 1, then after at most⌈

1

θ
log

n

ε

⌉
iterations we have nµ < ε([8]). For the total number of iterations, we
multiply the number of inner iterations by that of outer iterations. Hence
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the total number of iterations is bounded by
4(log p)

(
1 + 3q(log p)(1 + 2

√
2)
(

1 + 1
q log p log

(
2
√

2Ψ0+log p
log p

))4
)

θ
Ψ

1
2
0 log

n

ε

 .
�

Remark 4.14. By Remark 4.3, for large-update methods with τ =

O(n) and θ = Θ(1), by taking q := log

(
1+2
√

2Ψ̄0

log p

)
, the algorithm has

O((log p)
5
2
√
n log n log n

ε ) iteration complexity for p ≥ e. For small-

update methods with τ = O(1) and θ = Θ( 1√
n

), we have O(q
3
2 (log p)3

√
n log n

ε ) iteration complexity for q ≥ 1 and p ≥ e. These are the best
known complexity results for such methods.

5. Concluding remarks

Motivated by recent works of Roos et al.([2]) we propose a new eligible
kernel function which generalizes the kernel function in [2] and define a
primal-dual IPM for LO problems and improves the iteration complexity

of the algorithm in [2]. Furthermore we have O((log p)
5
2
√
n log n log n

ε )

andO(q
3
2 (log p)3√n log n

ε ) complexity bound for large- and small-update
methods which are the best known iteration bounds for such methods.

Future research might focus on the extension to semidefinite opti-
mization and symmetric cone optimization. Numerical tests will be an-
other topic for future research.
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