• 제목/요약/키워드: Fukushima nuclear accident

검색결과 229건 처리시간 0.024초

Dose Estimation Model for Terminal Buds in Radioactively Contaminated Fir Trees

  • Kawaguchi, Isao;Kido, Hiroko;Watanabe, Yoshito
    • Journal of Radiation Protection and Research
    • /
    • 제47권3호
    • /
    • pp.143-151
    • /
    • 2022
  • Background: After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, biological alterations in the natural biota, including morphological changes of fir trees in forests surrounding the power plant, have been reported. Focusing on the terminal buds involved in the morphological formation of fir trees, this study developed a method for estimating the absorbed radiation dose rate using radionuclide distribution measurements from tree organs. Materials and Methods: A phantom composed of three-dimensional (3D) tree organs was constructed for the three upper whorls of the fir tree. A terminal bud was evaluated using Monte Carlo simulations for the absorbed dose rate of radionuclides in the tree organs of the whorls. Evaluation of the absorbed dose targeted 131I, 134Cs, and 137Cs, the main radionuclides subsequent to the FDNPP accident. The dose contribution from each tree organ was calculated separately using dose coefficients (DC), which express the ratio between the average activity concentration of a radionuclide in each tree organ and the dose rate at the terminal bud. Results and Discussion: The dose estimation indicated that the radionuclides in the terminal bud and bud scale contributed to the absorbed dose rate mainly by beta rays, whereas those in 1-year-old trunk/branches and leaves were contributed by gamma rays. However, the dose contribution from radionuclides in the lower trunk/branches and leaves was negligible. Conclusion: The fir tree model provides organ-specific DC values, which are satisfactory for the practical calculation of the absorbed dose rate of radiation from inside the tree. These calculations are based on the measurement of radionuclide concentrations in tree organs on the 1-year-old leader shoots of fir trees. With the addition of direct gamma ray measurements of the absorbed dose rate from the tree environment, the total absorbed dose rate was estimated in the terminal bud of fir trees in contaminated forests.

Development of a human reliability analysis (HRA) guide for qualitative analysis with emphasis on narratives and models for tasks in extreme conditions

  • Kirimoto, Yukihiro;Hirotsu, Yuko;Nonose, Kohei;Sasou, Kunihide
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.376-385
    • /
    • 2021
  • Probabilistic risk assessment (PRA) has improved its elemental technologies used for assessing external events since the Fukushima Daiichi Nuclear Power Station Accident in 2011. HRA needs to be improved for analyzing tasks performed under extreme conditions (e.g., different actors responding to external events or performing operations using portable mitigation equipment). To make these improvements, it is essential to understand plant-specific and scenario-specific conditions that affect human performance. The Nuclear Risk Research Center (NRRC) of the Central Research Institute of Electric Power Industry (CRIEPI) has developed an HRA guide that compiles qualitative analysis methods for collecting plant-specific and scenario-specific conditions that affect human performance into "narratives," reflecting the latest research trends, and models for analysis of tasks under extreme conditions.

Research on rapid source term estimation in nuclear accident emergency decision for pressurized water reactor based on Bayesian network

  • Wu, Guohua;Tong, Jiejuan;Zhang, Liguo;Yuan, Diping;Xiao, Yiqing
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2534-2546
    • /
    • 2021
  • Nuclear emergency preparedness and response is an essential part to ensure the safety of nuclear power plant (NPP). Key support technologies of nuclear emergency decision-making usually consist of accident diagnosis, source term estimation, accident consequence assessment, and protective action recommendation. Source term estimation is almost the most difficult part among them. For example, bad communication, incomplete information, as well as complicated accident scenario make it hard to determine the reactor status and estimate the source term timely in the Fukushima accident. Subsequently, it leads to the hard decision on how to take appropriate emergency response actions. Hence, this paper aims to develop a method for rapid source term estimation to support nuclear emergency decision making in pressurized water reactor NPP. The method aims to make our knowledge on NPP provide better support nuclear emergency. Firstly, this paper studies how to build a Bayesian network model for the NPP based on professional knowledge and engineering knowledge. This paper presents a method transforming the PRA model (event trees and fault trees) into a corresponding Bayesian network model. To solve the problem that some physical phenomena which are modeled as pivotal events in level 2 PRA, cannot find sensors associated directly with their occurrence, a weighted assignment approach based on expert assessment is proposed in this paper. Secondly, the monitoring data of NPP are provided to the Bayesian network model, the real-time status of pivotal events and initiating events can be determined based on the junction tree algorithm. Thirdly, since PRA knowledge can link the accident sequences to the possible release categories, the proposed method is capable to find the most likely release category for the candidate accidents scenarios, namely the source term. The probabilities of possible accident sequences and the source term are calculated. Finally, the prototype software is checked against several sets of accident scenario data which are generated by the simulator of AP1000-NPP, including large loss of coolant accident, loss of main feedwater, main steam line break, and steam generator tube rupture. The results show that the proposed method for rapid source term estimation under nuclear emergency decision making is promising.

AIMS-MUPSA software package for multi-unit PSA

  • Han, Sang Hoon;Oh, Kyemin;Lim, Ho-Gon;Yang, Joon-Eon
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1255-1265
    • /
    • 2018
  • The need for a PSA (Probabilistic Safety Assessment) for a multi-unit at a site is growing after the Fukushima accident. Many countries have been studying issues regarding a multi-unit PSA. One of these issues is the problem of many combinations of accident sequences in a multi-unit PSA. This paper deals with the methodology and software to quantify a PSA scenarios for a multi-unit site. Two approaches are developed to quantify a multi-unit PSA. One is to use a minimal cut set approach, and the other is to use a Monte Carlo approach.

3 차원 프린팅 기술을 이용한 신개념 경수로 핵연료 기술 개발에 관한 연구 (Development of Innovative Light Water Reactor Nuclear Fuel Using 3D Printing Technology)

  • 김효찬;김현길;양용식
    • 한국정밀공학회지
    • /
    • 제33권4호
    • /
    • pp.279-286
    • /
    • 2016
  • To enhance the safety of nuclear reactors after the Fukushima accident, researchers are developing various types of accident tolerant fuel (ATF) to increase the coping time and reduce the generation of hydrogen by oxidation. Coated cladding, an ATF concept, can be a promising technology in view of its commercialization. We applied 3D printing technology to the fabrication of coated cladding as well as of coated pellets. Direct metal tooling (DMT) in 3D printing technologies can create a coated layer on the tubular cladding surface, which maintains stability during corrosion, creep, and wear in the reactor. A 3D laser coating apparatus was built, and parameter studies were carried out. To coat pellets with erbium using this apparatus, we undertook preliminary experiments involving metal pellets. The adhesion test showed that the coated layer can be maintained at near fracture strength.

ESTABLISHMENT OF A MAINTENANCE PROGRAM TO PREVENT LOSS OF OFFSITE POWER IN NUCLEAR POWER PLANTS

  • Lee, Eun-Chan;Na, Jang-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제45권6호
    • /
    • pp.791-794
    • /
    • 2013
  • Since the Fukushima accident in 2011, the importance of the electrical systems in nuclear power plants (NPPs) has been emphasized. The result has been that NPP regulators are enhancing their monitoring of loss of offsite power (LOOP) events. Korea Hydro & Nuclear Power Co. (KHNP) is reviewing the status and issues related to LOOPs, and is attempting to establish specific countermeasures to prevent LOOPs, because they can have severe consequences in the complicated maintenance schedule during an outage. A starting point for preventing LOOPs is the control of the loss of voltage (LOV)-initiating components. In order to reflect this in the risk assessment program, an LOV monitor is being developed for use during plant outages.

Core analysis of accident tolerant fuel cladding for SMART reactor under normal operation and rod ejection accident using DRAGON and PARCS

  • Pourrostam, A.;Talebi, S.;Safarzadeh, O.
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.741-751
    • /
    • 2021
  • There has been a deep interest in trying to find better-performing fuel clad motivated by the desire to decrease the likelihood of the reactor barrier failure like what happened in Fukushima in recent years. In this study, the effect of move towards accident tolerant fuel (ATF) cladding as the most attracting concept for improving reactor safety is investigated for SMART modular reactor. These reactors have less production cost, short construction time, better safety and higher power density. The SiC and FeCrAl materials are considered as the most potential candidate for ATF cladding, and the results are compared with Zircaloy cladding material from reactor physics point of view. In this paper, the calculations are performed by generating PMAX library by DRAGON lattice physics code to be used for further reactor core analysis by PARCS code. The differential and integral worth of control and safety rods, reactivity coefficient, power and temperature distributions, and boric acid concentration during the cycle are analyzed and compared from the conventional fuel cladding. The rod ejection accident (REA) is also performed to study how the power changed in response to presence of the ATF cladding in the reactor core. The key quantitative finding can be summarized as: 20 ℃ (3%) decrease in average fuel temperature, 33 pcm (3%) increase in integral rod worth and cycle length, 1.26 pcm/℃ (50%) and 1.05 pcm/℃ (16%) increase in reactivity coefficient of fuel and moderator, respectively.

수환경에서 세슘 흡착 제거의 최근 동향 (Recent Advances in Adsorption Removal of Cesium from Aquatic Environment)

  • 랄문시아마;김재규;최석순;이승목
    • 공업화학
    • /
    • 제29권2호
    • /
    • pp.127-137
    • /
    • 2018
  • 후쿠시마 다이치 핵발전소의 사고 이후 방사능 오염이 중요한 환경 관심사가 되었다. 원자량 134와 137 세슘은 주요 핵분열 산물이며, 이물질들은 방사능 오염의 주된 문제들이다. 후쿠시마 다이치 핵 발전소 사고에서 다량의 세슘이 방출되었으며, 이 사고의 결과, 많은 연구자들이 방사능-독성 세슘 제거를 위한 흡착제 개발에 집중하였다. 본 총설에서는 세슘 제거를 위하여 각광을 받는 물질로서 청색 안료와 이와 유사한 화합물 제조의 최근 발전 동향을 자세하게 검토하였다. 또한, 다양한 형태의 점토와 점토 기반 흡착제 및 새로 개발된 흡착제를 이용한 세슘 흡착의 최근 연구들을 고찰하였다.

Loading pattern design and economic evaluation for 24-month cycle operation of OPR-1000 in Korea

  • Jeongmin Lee;Hyun Chul Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1167-1180
    • /
    • 2023
  • Due to the tightened regulatory environment since the Fukushima accident, the capacity factor of Korean nuclear power plants has been declining since 2011. To overcome this circumstance, a shift from 18-month to 24-month cycle operation is being considered in Korea. Therefore, in this study, loading patterns(LPs) for 24-month cycle operation of the Korean standard nuclear power plant(OPR-1000) are suggested and economic evaluations are performed. A single-zone LP with 89 fresh fuels was evaluated to be optimal for 24-month operation of OPR-1000 in terms of economic gain. The 24-month operation of OPR-1000 with this LP gives a profit of 7.073 million dollars per year compared to 18-month operation.

설계기준초과지진 하의 원전 배관 구조건전성 평가를 위한 변형률 기반 방법 (Strain-Based Structural Integrity Evaluation Methods for Nuclear Power Plant Piping under Beyond Design Basis Earthquake)

  • 이대영;박흥배;김진원;류호완;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제12권2호
    • /
    • pp.66-70
    • /
    • 2016
  • Following the 2011 Fukushima Nuclear Power Plant accident, the IAEA has issued a revised version of the Nuclear Safety Standard for beyond design basis earthquake to consider the core meltdown accident. In Korea, relevant laws and regulations were also revised to consider beyond design basis earthquake to nuclear components. In this paper, CAV, an seismic damage factor that determines the restart of nuclear power plant after operating breakdown earthquake, is proposed for extension to the beyond design basis earthquake. For pipings not satisfying the beyond design basis earthquake condition, several evaluation methods are suggested, such as strain-based evaluation methods, simple nonlinear analysis method and cumulative damage evaluation method.