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a b s t r a c t

Nuclear emergency preparedness and response is an essential part to ensure the safety of nuclear power
plant (NPP). Key support technologies of nuclear emergency decision-making usually consist of accident
diagnosis, source term estimation, accident consequence assessment, and protective action recom-
mendation. Source term estimation is almost the most difficult part among them. For example, bad
communication, incomplete information, as well as complicated accident scenario make it hard to
determine the reactor status and estimate the source term timely in the Fukushima accident. Subse-
quently, it leads to the hard decision on how to take appropriate emergency response actions. Hence, this
paper aims to develop a method for rapid source term estimation to support nuclear emergency decision
making in pressurized water reactor NPP. The method aims to make our knowledge on NPP provide
better support nuclear emergency.

Firstly, this paper studies how to build a Bayesian network model for the NPP based on professional
knowledge and engineering knowledge. This paper presents a method transforming the PRA model
(event trees and fault trees) into a corresponding Bayesian network model. To solve the problem that
some physical phenomena which are modeled as pivotal events in level 2 PRA, cannot find sensors
associated directly with their occurrence, a weighted assignment approach based on expert assessment
is proposed in this paper. Secondly, the monitoring data of NPP are provided to the Bayesian network
model, the real-time status of pivotal events and initiating events can be determined based on the
junction tree algorithm. Thirdly, since PRA knowledge can link the accident sequences to the possible
release categories, the proposed method is capable to find the most likely release category for the
candidate accidents scenarios, namely the source term. The probabilities of possible accident sequences
and the source term are calculated. Finally, the prototype software is checked against several sets of
accident scenario data which are generated by the simulator of AP1000-NPP, including large loss of
coolant accident, loss of main feedwater, main steam line break, and steam generator tube rupture. The
results show that the proposed method for rapid source term estimation under nuclear emergency
decision making is promising.
© 2021 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
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1. Introduction

Nuclear emergency preparedness and response is an essential
part of the defense in depth to ensure the safety of nuclear power
plant (NPP). Correct and timely nuclear emergency decision-
making can provide operators with guidance and suggestions. It
can reduce the release of radioactive materials, harm to the public,
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Nomenclature

ACC Accumulators
ACC1-IV Accumulators-1 isolation valve
ACC1-P Accumulators-1 pressure
ACC1-SV Accumulators-1 start valve
ACC1-WL Accumulators-1 water level
ACC2-IV Accumulators-2 isolation valve
ACC2-P Accumulators-2 pressure
ACC2-SV Accumulators-2 start valve
ACC2-WL Accumulators-2 water level
ACP AC power
ADS Automatic depressurization system
APPRCS Average primary pressure in a reactor coolant system
BC Boron concentration
CHR Containment cooling removal system
CIS Containment isolation
CMT Core makeup tanks
CP Core power
CVS Chemical and volume control
CWL-containment Containment water level
CWL-core Core water level
FCL (1) Flow of coolant in loop 1
FCL (2) Flow of coolant in loop 2
IRSWT In-containment refueling water storage tank
LOCA Loss of coolant accident
LMFW Loss of main feedwater
MFWF Main feedwater flow of steam generator
MSLB Main steam line break
NPP Nuclear power plant
NRHR Normal residual heat removal
PC Pressure of the containment
PCL Pressure of second-loop

PCL(1) Pressure of coolant in loop 1
PCL(2) Pressure of coolant in loop 2
PPZ Pressure of pressurizer
PRA Probabilistic risk assessment
PRDEP Primary depressurization in SGTR
PRHR Passive residual heat removal
PSG (1) Pressure in steam generator 1
PSG (2) Pressure in steam generator 2
PWL Pit water level
PWR pressurized water reactor
RASCAL Radiological assessment system for consequence

analysis
RC Radioactivity of the containment
RCP Rate of coolant pressure
RECIRC Water recirculation to RPV from the sump occurs
RSG (1) Radioactivity in steam generator 1
RSG (2) Radioactivity in steam generator 2
SDS Shutdown signal
SFSG(1) Steam flow in steam generator 1
SFSG(2) Steam flow in steam generator 2
SFW Startup feed-water
SGDEP Secondary depressurization in SGTR by condenser
SGISO Isolation of faulted steam generator
SGTR Steam generator tube rupture
SMC Super-cooling of main coolant
STE Source term estimation
TC Temperature of the containment
TCLL (1) Temperature of the cold leg in loop 1
TCLL (2) Temperature of the cold leg in loop 2
WLPZ Water level in the pressurizer
WLSG (1) Water level in steam generator 1
WLSG (2) Water level in steam generator 2
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and economic losses. Nuclear emergency decision-making usually
includes the following key steps: accident diagnosis, source term
estimation (STE), accident consequence evaluation, and protective
action recommendations. Among them, accident diagnosis is the
analysis and judgment of the state of NPPs; the STE refers to
radioactive released from NPP through the containment or bypass
to the environment; accident consequence evaluation refers to
estimated harm of radioactive materials to the human body and
environment; protective action recommendations provide appro-
priate and specific countermeasure including take stable iodine and
so on [1] to avoid or reduce potential or projected harm.

STE is a key part of nuclear emergency decision-making. It has
relatively large uncertainties and technical difficulties. STE provides
input for subsequent steps such as accident consequence assess-
ment. Only the STE is relatively accuracy and the feedback timely,
the accident consequence assessment and protective action rec-
ommendations are more significant.

There are twomethods of STE: forward and inverse STEmethod.
Forward STE is based on the status of the reactor to calculate NPPs’
release of radioactivity, including core inventory, and the state of
core damage [2,3]; Inverse STE is based on environmental moni-
toring data to estimate the release of radioactivity [4].

Forward STEwas first proposed in theWASH-740 report [5]. Due
to the lack of experimental data, the method and related parame-
ters were relatively simple, and the calculation results were too
conservative. Subsequent US Nuclear Regulatory Commission is-
suedWASH-1400 report [6], introduced the concept of probabilistic
risk assessment (PRA), and proposed analysis of NPP risk methods.
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After the Three Mile Island nuclear accident, the industry and
regulators had launched a large-scale severe accident research
program. The industry had made important progress in under-
standing the severe accident mechanism. It had also developed
some accident analysis procedures. The uncertainty of the STE had
been analyzed and a large number of research results had been
obtained [7]. Based on the results of these studies, a framework for
emergency response for NPPs (NUREG-1228) [8] and a basis for
parameterization of important physical processes (NUREG-1465)
[9] was summarized. Scholars also conducted related research on
STE, such as developing STE methods for different NPPs [10e13].

The representativemethods of forward STE are the simulation of
external source accident with medical imaging (SESAME) [14],
response technical manual [15], and radiological assessment sys-
tem for consequence analysis (RASCAL) [16]. RASCAL parameter-
ized a large loss of coolant accident (LLOCA) based on previous
research results. The difference between thesemethodswasmainly
reflected in that the parameterization was simpler or more
complicated, and the accidents were covered more or less.

The inverse STE method was proposed after the Chernobyl nu-
clear accident. It is mainly based on the dose and concentration
monitoring of NPPs to achieve STE [17,18]. The main bottleneck of
inverse STE is difficult to guarantee the quality and quantity of
measurement data. The uncertainty of STE is introduced by mea-
surement data, meteorological model, and diffusion model. These
factors have challenged the advancement of such methods.

In summary, the STE now faces the following common prob-
lems: (1) expert knowledge is not fully utilized. Once an accident



Table 1
Release categories in level 2 PRA accident sequence.

Number Name Meaning

1 IC Intact Containment
2 BP Containment Bypass
3 CI Containment Isolation Failure
4 CFE Early Containment Failure
5 CFV Containment Venting
6 CFI Intermediate Containment Failure
7 CFL Late Containment Failure
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occurs in a NPP, a large number of alarm signals may appear. At this
time, experts are nervous and need to obtain key signal to judge the
status of NPP. So expert knowledge is difficult to be fully utilized
and the judgment speed is slow. (2) it has high demands on users
(experts); (3) The application reactor for STE is relatively fixed; (4)
it is difficult to achieve rapid STE. Based on the above problems, this
study proposes an intelligent method for STE of a pressurized water
reactor (PWR). This method is based on intelligent technology to
automatically identify the status of NPPs and uses a PRA model to
match all possible accident sequences to achieve STE.

STE is based on intelligent domain knowledge, including PRA
models and engineering knowledge. Intelligent technology is
implemented in nuclear emergency decision making. The intelli-
gent technology can be summarized as “inference, diagnosis, and
prediction”, that is, it uses intelligent technology methods to
analyze signal data, judge and predict the status of NPPs. Scholars
had also made some researches on the application of intelligent
technology in NPPs, such as the university of Tennessee [19] and
Harbin engineering university [20]. The application of intelligent
technology in NPPs is mainly applied in operation support systems,
including process monitoring and fault diagnosis [21]. Process
monitoring mainly analyzes the parameters of NPPs to judge
whether the status of NPPs is operating normally. This process is
“finding problems” [22]. The fault diagnosis is to determine what
kind of failure occurred in an NPP. This process is “finding the
cause".

Based on the above research, the framework of this paper is
proposed. Firstly, this paper studies how to build a Bayesian
network model for the NPP based on professional knowledge. It
presents a method transforming PRA model (event trees and fault
trees) into a Bayesian network model. To solve the problem that
some physical phenomena which are modeled as pivotal events in
Level 2 PRA, cannot find sensors associated directly with pivotal
events, so it is difficult to build the Bayesian network model for it. A
weighted assignment approach based on expert is proposed. Sec-
ondly, this paper implements the junction tree algorithm as the
diagnosis method to judge the status of NPPs. Thirdly, the proba-
bilities of possible accident sequences and the source term are
calculated. Finally, the proposed method is checked by the simu-
lator of AP1000-NPP, including LLOCA, loss of main feedwater
(LMFW), main steam line break (MSLB), and steam generator tube
rupture (SGTR).

2. A framework of PRA-based for rapid source term
estimation

Since NPPs are mainly PWR, it is necessary to apply knowledge-
based intelligent technology in PWR. At the same time, the system
of AP1000-NPP is redundant and complex, and modeling is more
universal. Therefore, this study selects AP1000-NPP as the research
object.

2.1. Level 2 PRA calculation

The level 2 PRA accident sequence of AP1000-NPP is the nuclear
accident emergency source term.

Release categories in level 2 PRA accident sequence of AP1000-
NPP are shown in Table 1 [23]. The level 2 PRA accident sequence
contains the analysis results of the source terms. Different accidents
sequence represents the results of different source terms. The paper
obtains the source term by matching the most likely accident
sequence. Therefore, PRA knowledge can realize fast and relatively
accurate STE.

Existing knowledge is used to directly match STE. The method is
shown in Fig. 1. By judging the state of the NPP, the probability of
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success or failure of each event is as the input of the event tree, the
probability of each accident sequence is calculated. The release
category corresponding to the most probable accident sequence is
the most likely source term.

Taking the probability of each initiating and pivotal event status
(success or failure) as inputs, probability of the accident sequence is
calculated, as shown in formula (1):

p*i ¼ PðIiÞ $ P
�
A
�
$ PðMÞ¼ PðIiÞ $ ð1� PðAÞÞ$PðMÞ (1)

where the accident sequence calculated in formula (1) is repre-
sented by the red line in Fig. 1, P(Ii) represents the probability of
occurrence of the initiating event, P(A) and P(M) indicate the
probability of the pivotal event A and M operating normally. P(M)
can be judged based on the operating status of the NPP, but the
probability of level 2 PRA initiating event is calculated from the
level 1 PRA accident sequence, so the level 1 PRA accident sequence
needs to be analyzed first.

The level 1 PRA accident sequence is the input of the level 2 PRA.
The analysis result of the level 2 PRA accident sequence is the
source term. The relationship between level 1 PRA and level 2 PRA
is shown in Fig. 2.

2.2. Level 1 PRA calculation method and classification

To calculate the level 1 PRA accident sequence, the status of each
initiating event and the level 1 PRA pivotal event are calculated,
which is the input of the event tree. The calculation method of the
accident sequence of the level 1 PRA and the level 2 PRA is the
same, as shown in formula (1). The difference is that the initiating
event of level 1 PRA need to judge the status of NPP, as shown in
Fig. 3.

The probability of all accident sequences in the level 1 PRA is
calculated by formula (1), and the calculation results of the level 1
PRA are the input of the level 2 PRA. But not all the calculation
results of the level 1 PRA accident sequence should be used as the
input of the level 2 PRA. Because part of the accident sequence in
the level 1 PRA represents that the core is not damaged, there is no
large-scale release of radioactive materials, so the calculation re-
sults of the level 1 PRA need to be classified in Table 2.

For each type of the same results, it is divided into one category,
and the accident sequence results are summed, and finally the
frequency of each plant damage state is obtained by formula (2).

Pn ¼ Pn1 þ Pn2 þ :::þ Pnkðn¼1;2; :::;9Þ (2)

where Pkn represents the probability of the n-th type of accident
sequence, k represents the quantity for the type of Pn. Pn indicates
that same plant damage state.

2.3. Application of Bayesian network in source term estimation

The analysis and calculation results of the level 1 PRA are clas-
sified, but the calculations need to judge the status of NPP, and the



Fig. 1. Combination of level 2 PRA with the status of NPP.

Fig. 2. Corresponding release category in PRA accident sequence.

G. Wu, J. Tong, L. Zhang et al. Nuclear Engineering and Technology 53 (2021) 2534e2546
reliability of the NPP state directly determines whether the STE is
accurate and reliable. If the status of an NPP is judged by humans,
diagnosis speed and reliability will be greatly reduced. As a com-
plex industry system, an NPP may cause thousands of alarm pa-
rameters if the nuclear accident occurs. It is difficult for emergency
personnel to quickly extract key information and accurately judge
the status of the NPP. At the same time, emergency personnel is
under tremendous psychological pressure, which makes it difficult
for emergency personnel to judge the status of NPPs and hinders
their knowledge. For example, in the Fukushima nuclear accident,
poor communication, incomplete information, and complex situa-
tions made it difficult to determine the status of the NPP. Therefore,
the paper introduces intelligent technology to judge the status of
NPP to solve the above problems.

The application of intelligent technology is when the NPP is
abnormal, and the abnormality of the parameters is automatically
identified to determine what kind of failure has occurred in the
NPP, such as expert systems, Bayesian network inference, etc. As a
complex industrial system, an NPP has intricate, coupled, and un-
certain information. Failures may manifest as multiple faults,
associated faults, and other complex forms. Bayesian network can
deal with these problems well, and it has the advantage of easy
visualization because it is substantially a graphical model, the
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capability of making complex fault diagnosis, the capability of
expressing uncertainty information, robustness for fault diagnosis,
and the efficiency of parallel inference [24]. The Bayesian network
is used in this paper.

3. Bayesian network

3.1. Principles of a Bayesian network

Bayesian network is a directed acyclic graph that consists of
nodes and directed edges [25,33]. The system's parameters are
represented by nodes. The node state generally represents the state
of continuously updated parameters, such as temperature and
pressure, which are evaluated initially with fuzzy theory. The re-
lationships of nodes are expressed by edges, which are represented
in conditional probability tables. An example Bayesian network
model is shown in Fig. 4. In the figure, C and D have two states.
When the state of C is 1, the probability of D being in state 1 or 2 is
respectively 0.6 or 0.4, as given by the conditional probability
tables.

3.2. Research on distributed Bayesian network modeling methods

Distributed modeling decomposes models into multiple mod-
ules, then these modules can be calculated individually and provide
support for model calculations. A NPP is composed of multiple
systems. It can perform distributed modeling of the NPP, which can
divide the NPP into multiple modules [35].

Compared with other industrial systems, the NPPs system is
more complex and redundant. There are 26 initiating events and 36
pivotal events in the level 1 PRA for AP1000-NPP [16]. Such a
complex system, the Bayesian network model will lead to the ex-
plosion of node information and increase the difficulty of modeling.
In this paper, a distributed modeling method is proposed. The
modeling difficulty is reduced, and node explosion in Bayesian
networks is solved.

In the AP1000-NPP, Bayesian network modeling is decomposed.
Firstly, the event tree is divided into an initiating event and a
pivotal event. Here, the initiating event is an event that causes the
system operation to fail, such as LOCA; a pivotal event refers to the
failure of the device to complete the specified task during the
response process, such as the failure to open the safety valve. To
achieve rapid STE, it is necessary to diagnose the status of the level
1 PRA initiating event, the level 1 PRA pivotal event, the level 2 PRA
initiating event, and the level 2 PRA pivotal event. The state of the



Fig. 3. Level 1 PRA accident sequence.

Table 2
Classification of level 1 PRA accident sequences.

Number Name Probability Meaning

1 1A P1 High pressure of primary loop (small break accident)
2 1AP P2 Incomplete pressure relief at high primary loop
3 1Dþ3D P3 Partial pressure relief in the primary loop
4 3A P4 High pressure in the next loop in a transient accident
5 3BE P5 Primary loop has depressurized (Large LOCA)
6 3BR P6 Primary loop has depressurized
7 3BL P7 The primary loop has been depressurized (gravity injection succeeded, and pit recirculation failed)
8 3C P8 Damaged pressure vessel
9 6Eþ6L P9 Containment bypass
10 Other types No further research

Fig. 4. Simplified BN model.
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level 2 PRA initiating event is calculated and analyzed by the level 1
PRA accident sequence. Therefore, the Bayesian network modeling
of AP1000-NPP mainly includes the following three categories:

(1) Level 1 PRA initiating event;
2538
(2) Level 1 PRA pivotal event;
(3) Level 2 PRA pivotal event.

The level 1 PRA initiating events use the expert modeling and
the expert group to build the Bayesian network model; existing
knowledge (fault tree) are applied to build Bayesian networkmodel
in the level 1 PRA pivotal events; the level 2 PRA pivotal events,
such as “hydrogen explosions”, are too complicated. Considering
factors such as limited accident awareness and fewer NPPs moni-
toring sensors, expert assessment methods are used to judge the
status of the level 2 PRA pivotal events.
3.3. Level 1 PRA initiating event

A level 1 PRA initiating event is an accident that causes
abnormal operation of the NPP. Bayesian network is a probabilistic
graphical model for causal inference which is based on conditional
probabilities. It is necessary to use expert knowledge to build the
model as reasonably as possible. The initiating event modeling is
divided into two steps: (1) acquiring existing domain knowledge;
(2) using professional knowledge to build a reliable Bayesian
network model. The first step is to acquire existing domain
knowledge, mainly relying on the safety analysis report and PRA
report of NPP. Chapter 19 of the AP1000 safety analysis report
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analyzes the symptoms of each initiating event [16]. It verifies and
explains the trends of key parameters in accidents. The second step
is to build a Bayesian network model by the expert group, based on
the safety analysis report and PRA report. The steps are shown in
Fig. 5.

After selecting the parameters, it is necessary to confirm the
relationship between accidents and parameters. According to the
description of the LOCA in the safety analysis report: when the
accident occurs, with primary coolant flowing out, radioactive
material leaks into the containment, and the dose in the contain-
ment increases. At the same time, the primary system leaks high-
temperature and high-pressure coolant to containment, the pres-
sure and temperature of the containment increase. As the primary
coolant continues to flow out, the pressure of the primary system
and water level in steam generators continue to decrease. The
relationship of the LOCA Bayesian network established is shown in
Fig. 6.

3.4. Level 1 PRA pivotal event

The safety analysis report contains the fault tree analysis of the
level 1 PRA pivotal event, which also represents the expert's
knowledge. Firstly, the fault tree is a directed tree-like network
structure, and Bayesian can well include the graphical structure of
the fault tree. Secondly, the logical gates of the fault tree can be
transformed into Bayesian network conditional probability tables.
Finally, this paper proposes a Bayesian network modeling method
for NPP shown in Fig. 7.

The following describes the method of determining the condi-
tional probability table of the Bayesian network through the fault
tree structure [26]. The relationship between nodes in the fault tree
is represented by logic gates. The following analysis analyzes how
to convert the “OR gate” into a conditional probability table [34].

(1) OR gate

The OR gate indicates that as long as one node fails, the top node
fails. The fault tree is transformed into a Bayesian network as
shown in Fig. 8.

Both the Bayesian network and the fault tree are network
structures, and the network nodes of the two can be transformed:
OR gate condition probability table is shown in formula (3).

PðG1 ¼ 1jX1 ¼ 0;X2 ¼ 0Þ ¼ 0
PðG1 ¼ 1jX1 ¼ 0;X2 ¼ 1Þ ¼ 1
PðG1 ¼ 1jX1 ¼ 1;X2 ¼ 0Þ ¼ 1
PðG1 ¼ 1jX1 ¼ 1;X2 ¼ 1Þ ¼ 1

(3)

(2) AND gate

The AND gate means that the top event occurs when all bottom
event occur. The conversion method is similar to the OR gate (as
shown in Fig. 9), but the relationship between nodes is different.
The conditional probability table is shown in formula (4).
Fig. 5. Bayesian network modeling step
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PðG1 ¼ 1jX1 ¼ 0;X2 ¼ 0Þ ¼ 0
PðG1 ¼ 1jX1 ¼ 0;X2 ¼ 1Þ ¼ 0
PðG1 ¼ 1jX1 ¼ 1;X2 ¼ 0Þ ¼ 0
PðG1 ¼ 1jX1 ¼ 1;X2 ¼ 1Þ ¼ 1

(4)

The Bayesian network model is constructed based on the mea-
surement points (In the modeling, it is necessary to consider
whether the Bayesian network evidence nodes correspond to the
sensor one by one). The structure of the Accumulators (ACC)
Bayesian network is shown in Fig. 10. The ACC pressure and ACC
water level are used to analyze the effect of valves.
3.5. Pivotal events of level 2 PRA

The pivotal event accident of Level 2 PRA is too complicated (it
does not used ET/FT method), such as “hydrogen explosion”. People
have limited awareness of such accidents, and there are fewer
measuring points to monitor accidents, which makes it very diffi-
cult to establish a Bayesian network. Taking the event “Hydrogen
Explosion” as an example, the measurement point is only the
concentration of hydrogen, and it is difficult to construct a Bayesian
network model. Therefore, the paper proposes “expert assessment”
method to obtain the status of the event.

The linear weighted assessment method is the simplest but
most effective statistical method and has been widely used. This
method is used to evaluate the level 2 PRA pivotal events. In linear
evaluation, the weights of the expert scores are determined. If the
weights are the same, the weight coefficients are all 1; if they are
different, different weight coefficients need to be set. Then the
status of the pivotal event is calculated by formula (4). The steps are
as follows [27]:

(1) There are n experts to evaluate whether an event has
occurred. Considering the experts' experience in operation
and engineering, each expert's weight is different. The
weight of each expert is W ¼ {wi} (i ¼ 1,2, … …, n).

(2) This paper designs three states: “success”, “uncertain” and
“failure” of the level 2 PRA pivotal event, and each choice
should correspond to the probability of the event success-
fully running. “Success”, “uncertain”, and “failure " indicate
that the probability of the event running successfully is 0.95,
0.5, and 0.05 respectively which is represented by R ¼ {ri}.

(3) The status of the level 2 PRA pivotal event is obtained based
on the weighted average method. The calculation formula is
shown in the following formula (5). The larger the value, the
higher the degree of compliance. Probability for level 2 PRA
pivotal event-A is obtained.

A¼

Pn
i¼1

wiri

Pn
i¼1

wi

(5)

where i ¼ 1;2;//n (n is the number of experts).
s for level 1 PRA initiating events.



Fig. 6. Preliminary model of LOCA Bayesian network.

Fig. 7. Flowchart of a fault tree transformed into a Bayesian network.

Fig. 8. OR gate into a Bayesian network.
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4. Bayesian network inference

To achieve Bayesian network inference, a large number of
scholars had proposedmany different types of methods. Depending
Fig. 9. Transformation of AND gate into Bayesian network.
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onwhether the calculation results of the inference are accurate, the
inference methods can be divided into two types of accurate
inference and approximate inference [28,29]. Accurate inference
means that when the Bayesian network makes inferences based on
information, all inferred node state information must be accurate
results. Approximate inference refers to the reasoning that the
node state is an approximate solution. Bayesian networks use ac-
curate inference when the structure is relatively simple and the
reasoning speed is fast. For Bayesian networks with complex
structures and slow inference calculation speeds, approximate
inference is often used to improve inference speed [30]. The clas-
sification method is shown in Fig. 11.

According to the introduction of Bayesian network inference
technology, the junction tree inference method has the advantages
of easy to understand and fast calculation speed. It is one of the
most common algorithms in Bayesian inference. The junction tree
inference method is to transform the Bayesian network into a tree
structure to achieve inference and diagnosis. The Bayesian network
is transformed into a newnetwork by the junction tree algorithm to
solve the problem of conditional independence in Bayesian
network inference. The calculation of the junction tree algorithm
includes the following steps [31]: moralization, triangulation,
construction of the junction tree, initialization, information trans-
mission and collection, and marginalization. The flowchart is
shown in Fig. 12 (Details for NPP refer to research group published
article [32], section 2.3.3).



Fig. 10. ACC failure fault tree and Bayesian network model.

Fig. 11. Bayesian inference classification.
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5. Case study

5.1. Bayesian network modeling for nuclear power plant

The proposed methods can achieve the Bayesian network
modeling for all initiating and pivotal events. Bayesian network
inference is used to judge the status of NPP for STE. In order to build
a Bayesian network model with multiple faults and inference
quickly and accurately, the paper proposes a distributed Bayesian
network modeling method.

Based on the above modeling methods, the paper proposes a
distributed modeling method suitable for NPPs. The paper selects
three representative initiating accidents: LLOCA, SGTR, MSLB, and
LMFW. Each pivotal event is an independent model and diagnosis
module. This model is embedded in the network, as shown in
Fig. 13.

The ACC node represents a complete pivotal event and a sepa-
rate Bayesian network (ACC Bayesian network model is shown in
2541
Fig. 10). The red in Fig. 13 represents an independent Bayesian
network model (just as ACC shown in Fig. 10). The following
problems are solved by modeling in this way:

(1) Distributed modeling reduces the complexity of the model;
(2) Distributed modeling simplifies the model, which makes

operators understand the model more clearly;
(3) The number of nodes of the model is reduced, the speed of

inference is improved.
5.2. Case study

In order to demonstrate the proposed method, typical accidents
of the AP1000 NPP are analyzed. By inserting the accident sequence
into the simulator, the data of each sensor of the NPP can be ob-
tained. The proposedmethod can be used to diagnose the operating
status and possible accident sequences of NPP. The accident



Fig. 12. Steps of junction tree algorithm inference.
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sequence inserted by the simulator and the calculated accident
sequence are compared and analyzed to verify the feasibility and
accuracy of the method. The steps are shown in Fig. 14.

5.3. Parameter analysis

With the occurrence of LLOCA in the simulator, the pressure
Fig. 13. Bayesian networ
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continues to decrease. Corresponding to the upper and lower limit
thresholds of the regulator operation. According to the state anal-
ysis, the current pressure of the voltage regulator is in three states:
“low”, “normal”, “high”, at probability 1, 0, 0. this evidence infor-
mation is fed into the Bayesian network for diagnosis (Details for
NPP refer to research group published article [32]).
5.4. Fault diagnosis results analysis

With the continuous input of evidence information, the results
of the accident diagnosis are shown in Fig. 15(The research team
developed the software). It is divided into four diagnostic modules:
initiating event, device status, plant damage state, STE in Fig. 15.
The curves indicate the probability of each fault occurred in Fig. 15.
The higher the probability of each fault occurred, the greater the
possibility that the fault is real. From the diagnosis result of the
accident state in Fig. 15, it can be seen that the emulator diagnosed
the accident as LLOCA in the eighth step after inserting the fault in
the fifth step (one step stands for 5 s). When the fault is not
inserted, the system is always in a normal operating state, and after
the fault is inserted, the system responds quickly and can quickly
identify the faults of NPP.

(1) Initiating event

It can be seen from Fig. 16 (initiating event) that the Bayesian
network can quickly diagnose the initiating event after the
emulator into an accident, and the fault is the same as the emulator
k integration model.



Fig. 14. Case analysis process of STE.
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inserted in. This shows the accuracy of the diagnosis results and
verifies the effectiveness of the Bayesian network diagnosis method
proposed in the paper.

(2) Device status

With the occurrence of LLOCA accidents, protective measures
have been used. The diagnosis results of the level 1 PRA pivotal
events are shown in Fig.15 (device status).When the NPP runs to 12
steps, the simulator is inserted into the ADS system and fails. Ac-
cording to the results of the equipment status diagnosis in Fig. 15,
the ADS-F fault can be seen, which shows the effectiveness of the
diagnosis of NPP (“000 indicates that the event runs successfully, and
“100 indicates that the event failed to run.).

5.5. Analysis of STE results

(1) Calculation of level 1 PRA accident sequence

The accident sequence process is shown in Fig. 15 (plant damage
state calculation results). The red color in the event tree (Fig. 16)
represents the direction of the accident process judged above. It can
be seen that the level 1 PRA accident sequence is 3D, and the sys-
tem diagnoses the accident sequence “1D þ 3D” with a probability
of 1 (Fig. 15). The diagnostic results indicating the effectiveness of
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the calculation method for the level 1 PRA accident sequence.

(2) Level 2 PRA accident sequence

The level 1 PRA accident sequence is classified, and the proba-
bility that the core state “1D þ 3D” occurs is 1, which is used as the
input of the level 2 PRA to calculate the level 2 accident sequence.
At this time, the level 2 PRA pivotal event is evaluated by experts
shown in Table 3. Input through the interface. The result is shown in
Fig. 15.

A level 2 PRA pivotal event status assessment is achieved by
formula (5), where the assessment results are that other events
successfully operated, but the IS system failed. The level 1 PRA
calculation results are used as inputs to calculate the STE, as shown
in Fig. 15. It can be seen that the source term with the highest
matching degree is the CI release class. By analyzing the secondary
PRA event tree, when IS fails, the event tree analysis accident
sequence is shown in Fig. 17. It can be seen that the event tree
analysis result is a CI release class, so the diagnosis result is the
same as the event tree analysis. The STE method is feasible and
reliable.

The proposedmethod is based on the professional knowledge of
PRA, without recalculating the source term, and directly achieving
the goal of rapid STE. In the case analysis, themethod canmatch the
release categories in 30 s. Compared with the speed of current STE,



Fig. 15. LLOCA diagnostic results under faulty operating conditions.

Fig. 16. LLOCA case level 1 PRA accident process analysis.
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the method greatly improves the calculation speed of source term
estimation.
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6. Conclusion

In this paper, AP1000-NPP is used as the research object, and the
diagnosis of the initiating event and the pivotal event in the level 1



Table 3
Level 2 PRA expert score.

Number Event Meaning Expert A Expert B Expert C

1 DP RCS Depressurization After Core Uncovery success success success
2 IS Containment Isolation uncertain failure failure
3 IR Reactor Cavity Flooding success success success
4 RFL Reflooding of a Degraded Core success success success
5 VF Debris Relocation to the Reactor Cavity success success success
6 PC Passive Containment Cooling success success success
7 VT Containment Venting success success success
8 IF Intermediate Containment Failure success success success
9 IG Hydrogen Control System success success success
10 DF Diffusion Flame success success success
11 DTE Early Hydrogen Detonation success success success
12 DFG Hydrogen Deflagration success success success
13 DTI Intermediate Hydrogen Detonation success success success

Fig. 17. Analysis result of level 2 PRA event tree.
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PRA is realized based on the Bayesian network. The probability of
each sequence is calculated based on the event tree model, the
interface between the level 1 PRA and the level 2 PRA accident
sequence is achieved. It quickly calculates the most likely release
categories in the accident sequence and realize the rapid STE. The
main work of this paper is summarized as follows:

(1) This paper uses intelligent inference and the existing PRA
model to achieve rapid STE of the PWR based on calculating
the level 1 and 2 PRA accident sequences.

(2) The state of the initiating event and the pivotal event in the
level 1 PRA is diagnosed based on the Bayesian network and
event tree.

(3) The method of building AP1000-NPP Bayesian network
model is proposed.

After achieving the quick STE, how to instruct emergency
commanders with the accident consequence evaluation can be
further studied.
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