DOI QR코드

DOI QR Code

Recent Advances in Adsorption Removal of Cesium from Aquatic Environment

수환경에서 세슘 흡착 제거의 최근 동향

  • Lalhmunsiama, Lalhmunsiama (Department of Environmental Engineering, Catholic Kwandong University) ;
  • Kim, Jae-Gyu (Department of Environmental Engineering, Catholic Kwandong University) ;
  • Choi, Suk Soon (Biological and Environmental Engineering, Semyung University) ;
  • Lee, Seung-Mok (Department of Environmental Engineering, Catholic Kwandong University)
  • 랄문시아마 (가톨릭관동대학교 환경공학과) ;
  • 김재규 (가톨릭관동대학교 환경공학과) ;
  • 최석순 (세명대학교 바이오환경공학과) ;
  • 이승목 (가톨릭관동대학교 환경공학과)
  • Received : 2018.02.22
  • Accepted : 2018.03.07
  • Published : 2018.04.10

Abstract

Radioactive contamination has become an important environmental concern after the accident occurred in Fukushima Daiichi Nuclear Power Plants. $^{134}Cs$ and $^{137}Cs$ are the major fission products and they are main problems in radioactive contamination. Huge amounts of Cs were released during the Fukushima Daiichi Nuclear Power Plants accident and as a result of this incident, many researchers focused on the development of adsorbents for decontamination of radiotoxic cesium. This review will critically evaluate recent advances in the preparation of Prussian blue and its analogue compounds, which are promising materials for cesium removal. Furthermore, this review will discuss recent studies on the cesium adsorption using different types of clay and clay based adsorbents and summarize various types of newly developed Cs adsorbents reported in recent years.

후쿠시마 다이치 핵발전소의 사고 이후 방사능 오염이 중요한 환경 관심사가 되었다. 원자량 134와 137 세슘은 주요 핵분열 산물이며, 이물질들은 방사능 오염의 주된 문제들이다. 후쿠시마 다이치 핵 발전소 사고에서 다량의 세슘이 방출되었으며, 이 사고의 결과, 많은 연구자들이 방사능-독성 세슘 제거를 위한 흡착제 개발에 집중하였다. 본 총설에서는 세슘 제거를 위하여 각광을 받는 물질로서 청색 안료와 이와 유사한 화합물 제조의 최근 발전 동향을 자세하게 검토하였다. 또한, 다양한 형태의 점토와 점토 기반 흡착제 및 새로 개발된 흡착제를 이용한 세슘 흡착의 최근 연구들을 고찰하였다.

Keywords

References

  1. J. Wu, Impacts of Fukushima Daiichi Nuclear Power Plant accident on the Western North Pacific and the China Seas: Evaluation based on field observation of $^{137}Cs$, Mar. Pollut. Bull., 127, 45-53 (2018). https://doi.org/10.1016/j.marpolbul.2017.11.056
  2. B. F. Myasoedov and S. N. Kalmykov, Nuclear power industry and the environment, Mendeleev Commun., 25, 319-328 (2015). https://doi.org/10.1016/j.mencom.2015.09.001
  3. H. Tsukada, H. Hasegawa, S. Hisamatsu, and S. Yamasaki, Transfer of 137Cs and stable Cs from paddy soil to polished rice in Aomori, Japan. J. Environ. Radioact., 59, 351-363 (2002). https://doi.org/10.1016/S0265-931X(01)00083-2
  4. T. Lan, Y. Feng, J. Liao, X. Li, C. Ding, D. Zhang, J. Yang, J. Zeng, Y. Yang, J. Tang, and N. Liu, Biosorption behavior and mechanism of cesium-137 on Rhodosporidium fluviale strain UA2 isolated from cesium solution, J. Environ. Radioact., 134, 6-13 (2014). https://doi.org/10.1016/j.jenvrad.2014.02.016
  5. C. Xiao, A. Zhang, and Z. Chai, Synthesis and characterization of a novel organic-inorganic hybrid supramolecular recognition material and its selective adsorption for cesium, J. Radioanal. Nucl. Chem., 299, 699-708 (2013).
  6. M. R. Awual, S. Suzuki, T. Taguchi, H. Shiwaku, Y. Okamoto, and T. Yaita, Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents, Chem. Eng. J., 242, 127-135 (2014). https://doi.org/10.1016/j.cej.2013.12.072
  7. R. Kamaraj and S. Vasudevan, Evaluation of electrocoagulation process for the removal of strontium and cesium from aqueous solution, Chem. Eng. Res. Des., 93, 522-530 (2015). https://doi.org/10.1016/j.cherd.2014.03.021
  8. S. Ding, Y. Yang, H. Huang, H. Liu, and L. Hou, Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium, J. Hazard. Mater., 294, 27-34 (2015). https://doi.org/10.1016/j.jhazmat.2015.03.056
  9. F. Jia and J. Wang, Separation of cesium ions from aqueous solution by vacuum membrane distillation process, Prog. Nucl. Energy, 98, 293-300 (2017). https://doi.org/10.1016/j.pnucene.2017.04.008
  10. C. C. Pavel and K. Popa, Investigations on the ion exchange process of $Cs^+$ and $Sr^{2+}$ cations by ETS materials, Chem. Eng. J., 245, 288-294 (2014). https://doi.org/10.1016/j.cej.2014.02.036
  11. S. Khandaker, T. Kuba, S. Kamida, and Y. Uchikawa, Adsorption of cesium from aqueous solution by raw and concentrated nitric acid-modified bamboo charcoal, J. Environ. Chem. Eng., 5, 1456-1464 (2017). https://doi.org/10.1016/j.jece.2017.02.014
  12. R. Chen, H. Tanaka, T. Kawamoto, M. Asai, C. Fukushima, M. Kurihara, M. Watanabe, M. Arisaka, and T. Nankawa, Preparation of a film of copper hexacyanoferrate nanoparticles for electrochemical removal of cesium from radioactive wastewater, Electrochem. Commun., 25, 23-25 (2012). https://doi.org/10.1016/j.elecom.2012.09.012
  13. Y. Zheng, J. Qiao, J. Yuan, J. Shen, A. Wang, and L. Niu, Electrochemical Removal of Radioactive Cesium from Nuclear Waste Using the Dendritic Copper Hexacyanoferrate/Carbon Nanotube Hybrids, Electrochim. Acta., 257, 172-180 (2017). https://doi.org/10.1016/j.electacta.2017.09.179
  14. P. J. Faustino, Y. Yang, J. J. Progar, C. R. Brownell, N. Sadrieh, J. C. May, E. Leutzinger, D. A. Place, E. P. Duffy, F. Houn, S. A. Loewke, V. J. Mecozzi, C. D. Ellison, M. A. Khan, A. S. Hussain, and R. C. Lyon, Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue, J. Pharm. Biomed. Anal., 47, 114-125 (2008). https://doi.org/10.1016/j.jpba.2007.11.049
  15. G.-R. Chen, Y.-R. Chang, X. Liu, T. Kawamoto, H. Tanaka, D. Parajuli, T. Kawasaki, Y. Kawatsu, T. Kobayashi, M.-L. Chen, Y.-K. Lo, Z. Lei, and D.-J. Lee, Cesium removal from drinking water using Prussian blue adsorption followed by anion exchange process, Sep. Purif. Technol., 172, 147-151 (2017). https://doi.org/10.1016/j.seppur.2016.07.055
  16. M. Ishizaki, S. Akiba, A. Ohtani, Y. Hoshi, K. Ono, M. Matsuba, T. Togashi, K. Kananizuka, M. Sakamoto, A. Takahashi, T. Kawamoto, H. Tanaka, M. Watanabe, M. Arisaka, T. Nankawa, and M. Kurihara, Proton-exchange mechanism of specific $Cs^+$ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules, Dalton Trans., 42, 16049-16055 (2013). https://doi.org/10.1039/c3dt51637g
  17. N. L. Torad, M. Hu, M. Imura, M. Naito, and Y. Yamauchi, Large Cs adsorption capability of nanostructured Prussian blue particles with high accessible surface areas, J. Mater. Chem., 22, 18261-18267 (2012). https://doi.org/10.1039/c2jm32805d
  18. G.-R. Chen, Y.-R. Chang, X. Liu, T. Kawamoto, H. Tanaka, A. Kitajima, D. Parajuli, M. Takasaki, K. Yoshino, M.-L. Chen, Y.-K. Lo, Z. Lei, and D.-J. Lee, Prussian blue (PB) granules for cesium (Cs) removal from drinking water, Sep. Purif. Technol., 143, 146-151 (2015). https://doi.org/10.1016/j.seppur.2015.01.040
  19. Y. Kim, Y. K. Kim, S. Kim, D. Harbottle, and J. W. Lee, Nanostructured potassium copper hexacyanoferrate-cellulose hydrogel for selective and rapid cesium adsorption, Chem. Eng. J., 313, 1042-1050 (2017). https://doi.org/10.1016/j.cej.2016.10.136
  20. H. G. Mobtaker, T. Yousefi, and S. M. Pakzad, Cesium removal from nuclear waste using a magnetical CuHCNPAN nano composite, J. Nucl. Mater., 482, 306-312 (2016). https://doi.org/10.1016/j.jnucmat.2016.10.034
  21. J.-Y. Su, G.-P. Jin, T. Chen, X.-D. Liu, C.-N. Chen, and J.-J. Tian, The characterization and application of prussian blue at graphene coated carbon fibers in a separated adsorption and electrically switched ion exchange desorption processes of cesium, Electrochim. Acta., 230, 399-406 (2017). https://doi.org/10.1016/j.electacta.2017.02.027
  22. S. Feng, X. Li, F. Ma, R. Liu, G. Fu, S. Xing, and X. Yue, Prussian blue functionalized microcapsules for effective removal of cesium in a water environment, RSC Adv., 6, 34399-34410 (2016). https://doi.org/10.1039/C6RA01450J
  23. G.-R. Chen, Y.-R. Chang, X. Liu, T. Kawamoto, H. Tanaka, D. Parajuli, M.-L. Chen, Y.-K. Lo, Z. Lei, and D.-J. Lee, Prussian blue non-woven filter for cesium removal from drinking water, Sep. Purif. Technol., 153, 37-42 (2015). https://doi.org/10.1016/j.seppur.2015.08.029
  24. T. Sasaki and S. Tanaka, Magnetic separation of cesium ion using Prussian blue modified magnetite, Chem. Lett., 41, 32-34 (2012). https://doi.org/10.1246/cl.2012.32
  25. C. Thammawong, P. Opaprakasit, P. Tangboriboonrat, and P. Sreearunothai, Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment, J. Nanopar. Res., 15, 1689-1699 (2013). https://doi.org/10.1007/s11051-013-1689-z
  26. J. Jang and D. S. Lee, Magnetic Prussian blue nanocomposites for effective cesium removal from aqueous solution, Ind. Eng. Chem. Res., 55, 3852-3860 (2016). https://doi.org/10.1021/acs.iecr.6b00112
  27. L. Chang, S. Chang, W. Chen, W. Han, Z. Li, Z. Zhang, Y. Dai, and D. Chen, Facile one-pot synthesis of magnetic Prussian blue core/shell nanoparticles for radioactive cesium removal, RSC Adv., 6, 96223-96228 (2016). https://doi.org/10.1039/C6RA17525B
  28. H.-M. Yang, S.-C. Jang, S. B. Hong, K.-W. Lee, C. Roh, Y. S. Huh, and B.-K. Seo, Prussian blue-functionalized magnetic nanoclusters for the removal of radioactive cesium from water, J. Alloys Compd., 657, 387-393 (2016). https://doi.org/10.1016/j.jallcom.2015.10.068
  29. Y. Namiki, T. Namiki, Y. Ishii, S. Koido, Y. Nagase, A. Tsubota, N. Tada, and Y. Kitamoto, Inorganic-organic magnetic nanocomposites for use in preventive medicine: A rapid and reliable elimination system for cesium, Pharm. Res., 29, 1404-1418 (2012). https://doi.org/10.1007/s11095-011-0628-x
  30. S. Naeimi and H. Faghihian, Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of $Cs^+$ from aqueous solution, Sep. Purif. Technol., 175, 255-265 (2017). https://doi.org/10.1016/j.seppur.2016.11.028
  31. A. A. Kadam, J. Jang, and D. S. Lee, Facile synthesis of pectin-stabilized magnetic graphene oxide Prussian blue nanocomposites for selective cesium removal from aqueous solution, Bioresour. Technol., 216, 391-398 (2016). https://doi.org/10.1016/j.biortech.2016.05.103
  32. H. Yang, H. Li, J. Zhai, L. Sun, Y. Zhao, and H. Yu, Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil, Chem. Eng. J., 246, 10-19 (2014). https://doi.org/10.1016/j.cej.2014.02.060
  33. C. Vincent, Y. Barre, T. Vincent, J.-M. Taulemesse, M. Robitzer, and E. Guibal, Chitin-Prussian blue sponges for Cs(I) recovery: From synthesis to application in the treatment of accidental dumping of metal-bearing solutions, J. Hazard. Mater., 287, 171-179 (2015). https://doi.org/10.1016/j.jhazmat.2015.01.041
  34. A. Takahashi, A. Kitajima, D. Parajuli, Y. Hakuta, H. Tanaka, S. Ohkoshi, and T. Kawamoto, Radioactive cesium removal from ash-washing solution with high pH and high K+-concentration using potassium zinc hexacyanoferrate, Chem. Eng. Res. Des., 109, 513-518 (2016). https://doi.org/10.1016/j.cherd.2016.02.027
  35. D. Dechojarassri, S. Asaina, S. Omote, K. Nishida, T. Furuike, and H. Tamura, Adsorption and desorption behaviors of cesium on rayon fibers coated with chitosan immobilized with Prussian blue, Int. J. Biol. Macromol., 104, 1509-1516 (2017). https://doi.org/10.1016/j.ijbiomac.2017.03.056
  36. B. Hu, B. Fugetsu, H. Yu, and Y. Abe, Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium, J. Hazard. Mater., 217-218, 85-91 (2012). https://doi.org/10.1016/j.jhazmat.2012.02.071
  37. P. S. Liu, G. Cui, and Y. J. Guo, A lightweight porous ceramic foam loading Prussian blue analogue for removal of toxic ions in water, Mater. Lett., 182, 273-276 (2016). https://doi.org/10.1016/j.matlet.2016.07.019
  38. A. Kitajima, H. Tanaka, N. Minami, K. Yoshino, and T. Kawamoto, Efficient cesium adsorbent using prussian blue nanoparticles immobilized on cotton matrices, Chem. Lett., 41, 1473-1474 (2012). https://doi.org/10.1246/cl.2012.1473
  39. S. S. Metwally, I. M. Ahmed, and H. E. Rizk, Modification of hydroxyapatite for removal of cesium and strontium ions from aqueous solution, J. Alloys Compd., 709, 438-444 (2017). https://doi.org/10.1016/j.jallcom.2017.03.156
  40. M. Darder, Y. Gonzalez-Alfaro, P. Aranda, and E. Ruiz-Hitzky, Silicate-based multifunctional nanostructured materials with magnetite and Prussian blue: application to cesium uptake, RSC Adv., 4, 35415-35421 (2014). https://doi.org/10.1039/C4RA06023G
  41. C. Delchet, A. Tokarev, X. Dumail, G. Toquer, Y. Barre, Y. Guari, C. Guerin, J. Larionova, and A. Grandjean, Extraction of radioactive cesium using innovative functionalized porous materials, RSC Adv., 2, 5707-5716 (2012). https://doi.org/10.1039/c2ra00012a
  42. R. Yi, G. Ye, F. Wu, M. Wen, X. Feng, and J. Chen, Highly efficient removal of 137Cs in seawater by potassium titanium ferrocyanide functionalized magnetic microspheres with multilayer core-shell structure, RSC Adv., 4, 37600-37608 (2014). https://doi.org/10.1039/C4RA05397D
  43. K. S. Hwang, C. W. Park, K.-W. Lee, S.-J. Park, and H.-M. Yang, Highly efficient removal of radioactive cesium by sodium-copper hexacyanoferrate-modified magnetic nanoparticles, Colloids Surf. A, 516, 375-382 (2017). https://doi.org/10.1016/j.colsurfa.2016.12.052
  44. T. Sangvanich, V. Sukwarotwat, R. J. Wiacek, R. M. Grudzien, G. E. Fryxell, R. S. Addleman, C. Timchalk, and W. Yantasee, Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica, J. Hazard. Mater., 182, 225-231 (2010). https://doi.org/10.1016/j.jhazmat.2010.06.019
  45. N. Genevois, N. Villandier, V. Chaleix, E. Poli, L. Jauberty, and V. Gloaguen, Removal of cesium ion from contaminated water: Improvement of Douglas fir bark biosorption by a combination of nickel hexacyanoferrate impregnation and TEMPO oxidation, Ecol. Eng., 100, 186-193 (2017). https://doi.org/10.1016/j.ecoleng.2016.12.012
  46. C. Vincent, A. Hertz, T. Vincent, Y. Barre, and E. Guibal, Immobilization of inorganic ion-exchanger into biopolymer foams - Application to cesium sorption, Chem. Eng. J., 236, 202-211 (2014). https://doi.org/10.1016/j.cej.2013.09.087
  47. N. Li, Z. Li, J. Yuan, J. Hu, J. Miao, Q. Zhang, L. Niu, and J. Song, Nickel hexacyanoferrate nanoparticles anchored to multiwalled carbon nanotubes with a grafted poly(4-vinylpyridine) linker for electrically switched ion exchange, Electrochim. Acta., 72, 150-156 (2012). https://doi.org/10.1016/j.electacta.2012.04.026
  48. Lalhmunsiama, C. Lalhriatpuia, D. Tiwari, and S.-M. Lee, Immobilized nickel hexacyanoferrate on activated carbons for efficient attenuation of radio toxic Cs(I) from aqueous solutions, Appl. Surf. Sci., 321, 275-282 (2014). https://doi.org/10.1016/j.apsusc.2014.09.200
  49. H. Parab and M. Sudersanan, Engineering a lignocellulosic biosorbent - Coir pith for removal of cesium from aqueous solutions: Equilibrium and kinetic studies, Water Res., 44, 854-860 (2010). https://doi.org/10.1016/j.watres.2009.09.038
  50. D. Ding, Z. Lei, Y. Yang, C. Feng, and Z. Zhang, Selective removal of cesium from aqueous solutions with nickel (II) hexacyanoferrate (III) functionalized agricultural residue-walnut shell, J. Hazard. Mater., 270, 187-195 (2014). https://doi.org/10.1016/j.jhazmat.2014.01.056
  51. Y. Mihara, M. T. Sikder, H. Yamagishi, T. Sasaki, M. Kurasaki, S. Itoh, and S. Tanaka, Adsorption kinetic model of alginate gel beads synthesized micro particle-prussian blue to remove cesium ions from water, J. Water Process Eng., 10, 9-19 (2016). https://doi.org/10.1016/j.jwpe.2016.01.001
  52. Y.-C. Lai, Y.-R. Chang, M.-L. Chen, Y.-K. Lo, J.-Y. Lai, and D.-J. Lee, Poly(vinyl alcohol) and alginate cross-linked matrix with immobilized Prussian blue and ion exchange resin for cesium removal from waters, Bioresour. Technol., 214, 192-198 (2016). https://doi.org/10.1016/j.biortech.2016.04.096
  53. A. K. Vipin, B. Hu, and B. Fugetsu, Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water, J. Hazard. Mater., 258-259, 93-101 (2013). https://doi.org/10.1016/j.jhazmat.2013.04.024
  54. C. Dwivedi, S. K. Pathak, M. Kumar, S. C. Tripathi, and P. N. Bajaj, Preparation and characterization of potassium nickel hexacyanoferrate-loaded hydrogel beads for the removal of cesium ions, Environ. Sci. Water Res. Technol., 1, 153-160 (2015). https://doi.org/10.1039/C4EW00021H
  55. C. Dwivedi, S. K. Pathak, M. Kumar, S. C. Tripathi, and P. N. Bajaj, Potassium cobalthexacyanoferrate-gel beads for cesium removal: kinetics and sorption studies, RSC Adv., 3, 22102-22110 (2013). https://doi.org/10.1039/c3ra43463j
  56. J. Jang and D. S. Lee, Enhanced adsorption of cesium on PVA-alginate encapsulated Prussian blue-graphene oxide hydrogel beads in a fixed-bed column system, Bioresour. Technol., 218, 294-300 (2016). https://doi.org/10.1016/j.biortech.2016.06.100
  57. C. Jeon, Removal of cesium ions from aqueous solutions using immobilized nickel hexacyanoferrate-sericite beads in the batch and continuous processes, J. Ind. Eng. Chem., 40, 93-98 (2016). https://doi.org/10.1016/j.jiec.2016.06.010
  58. O. Ozsoy and M. Bekbolet, Surface interactions of $Cs^+$ and $Co^{2+}$ with bentonite, Environ. Sci. Pollut. Res. Int., 25, 3020-3029 (2018). https://doi.org/10.1007/s11356-015-4103-9
  59. N. Suzuki, S. Ozawa, K. Ochi, T. Chikuma, and Y. Watanabe, Approaches for cesium uptake by vermiculite: Approaches for cesium uptake by vermiculite, J. Chem. Technol. Biotechnol., 88, 1603-1605 (2013). https://doi.org/10.1002/jctb.4145
  60. D. Tiwari, Lalhmunsiama, S. I. Choi, and S. M. Lee, Activated sericite: An efficient and effective natural clay material for attenuation of cesium from aquatic environment, Pedosphere, 24, 731-742 (2014). https://doi.org/10.1016/S1002-0160(14)60060-6
  61. D. Ding, Z. Lei, Y. Yang, and Z. Zhang, Efficiency of transition metal modified akadama clay on cesium removal from aqueous solutions, Chem. Eng. J., 236, 17-28 (2014). https://doi.org/10.1016/j.cej.2013.09.075
  62. H. Long, P. Wu, and N. Zhu, Evaluation of $Cs^+$ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite, Chem. Eng. J., 225, 237-244 (2013). https://doi.org/10.1016/j.cej.2013.03.088
  63. B. Ma, S. Oh, W. S. Shin, and S.-J. Choi, Removal of $Co^{2+}$, $Sr^{2+}$ and $Cs^+$ from aqueous solution by phosphate-modified montmorillonite (PMM), Desalination, 276, 336-346 (2011). https://doi.org/10.1016/j.desal.2011.03.072
  64. X. Zheng, J. Dou, J. Yuan, W. Qin, X. Hong, and A. Ding, Removal of $Cs^+$ from water and soil by ammonium-pillared montmorillonite/$Fe_3O_4$ composite, J. Environ. Sci., 56, 12-24 (2017). https://doi.org/10.1016/j.jes.2016.08.019
  65. S. Yang, N. Okada, and M. Nagatsu, The highly effective removal of $Cs^+$ by low turbidity chitosan-grafted magnetic bentonite, J. Hazard. Mater., 301, 8-16 (2016). https://doi.org/10.1016/j.jhazmat.2015.08.033
  66. S. Yang, C. Han, X. Wang, and M. Nagatsu, Characteristics of cesium ion sorption from aqueous solution on bentonite- and carbon nanotube-based composites, J. Hazard. Mater., 274, 46-52 (2014). https://doi.org/10.1016/j.jhazmat.2014.04.001
  67. D. Li, D. I. Kaplan, A. S. Knox, K. P. Crapse, and D. P. Diprete, Aqueous 99Tc, 129I and 137Cs removal from contaminated groundwater and sediments using highly effective low-cost sorbents, J. Environ. Radioact., 136, 56-63 (2014). https://doi.org/10.1016/j.jenvrad.2014.05.010
  68. H. Long, P. Wu, L. Yang, Z. Huang, N. Zhu, and Z. Hu, Efficient removal of cesium from aqueous solution with vermiculite of enhanced adsorption property through surface modification by ethylamine, J. Colloid Interface Sci., 428, 295-301 (2014). https://doi.org/10.1016/j.jcis.2014.05.001
  69. B. Pangeni, H. Paudyal, K. Inoue, K. Ohto, H. Kawakita, and S. Alam, Preparation of natural cation exchanger from persimmon waste and its application for the removal of cesium from water, Chem. Eng. J., 242, 109-116 (2014). https://doi.org/10.1016/j.cej.2013.12.042
  70. A. E. Ofomaja, A. Pholosi, and E. B. Naidoo, Kinetics and competitive modeling of cesium biosortion onto chemically modified pine cone powder, J. Taiwan Inst. Chem. Eng., 44, 943-951 (2013). https://doi.org/10.1016/j.jtice.2013.02.001
  71. A. G. Al Lafi and J. Al Abdullah, Cesium and cobalt adsorption on synthetic nano manganese oxide: A two dimensional infra-red correlation spectroscopic investigation, J. Mol. Struct., 1093, 13-23 (2015). https://doi.org/10.1016/j.molstruc.2015.03.027
  72. K. Qin, F. Li, S. Xu, T. Wang, and C. Liu, Sequential removal of phosphate and cesium by using zirconium oxide: A demonstration of designing sustainable adsorbents for green water treatment, Chem. Eng. J., 322, 275-280 (2017). https://doi.org/10.1016/j.cej.2017.04.046
  73. R. Cortes-Martinez, M. T. Olguin, and M. Solache-Rios, Cesium sorption by clinoptilolite-rich tuffs in batch and fixed-bed systems, Desalination, 258, 164-170 (2010). https://doi.org/10.1016/j.desal.2010.03.019
  74. C. K. Kim, J. Y. Kong, B. S. Chun, and J.-W. Park, Radioactive removal by adsorption on Yesan clay and zeolite, Environ. Earth Sci., 68, 2393-2398 (2013). https://doi.org/10.1007/s12665-012-1923-5
  75. H. Y. Lee, H. S. Kim, H.-K. Jeong, M. Park, D.-Y. Chung, K.-Y. Lee, E.-H. Lee, and W. T. Lim, Selective removal of radioactive cesium from nuclear waste by zeolites: On the origin of cesium selectivity revealed by systematic crystallographic studies, J. Phys. Chem. C, 121, 10594-10608 (2017). https://doi.org/10.1021/acs.jpcc.7b02432
  76. C. Dwivedi, A. Kumar, J. K. Ajish, K. Kant Singh, M. Kumar, P. Kishen Wattal, and P. Nand Bajaj, Resorcinol - formaldehyde coated XAD resin beads for removal of cesium ions from radioactive waste: synthesis, sorption and kinetic studies, RSC Adv., 2, 5557-5564 (2012). https://doi.org/10.1039/c2ra20054f
  77. Z. Majidnia and A. Idris, Evaluation of cesium removal from radioactive waste water using maghemite PVA-alginate beads, Chem. Eng. J., 262, 372-382 (2015). https://doi.org/10.1016/j.cej.2014.09.118
  78. H.-R. Yu, J.-Q. Hu, Z. Liu, X.-J. Ju, R. Xie, W. Wang, and L.-Y. Chu, Ion-recognizable hydrogels for efficient removal of cesium ions from aqueous environment, J. Hazard. Mater., 323, 632-640 (2017). https://doi.org/10.1016/j.jhazmat.2016.10.024
  79. V. Kumar, J. N. Sharma, P. V. Achuthan, D. K. Singh, and S. M. Ali, A new bisglycolamide substituted calix[4]arene-benzo-crown-6 for the selective removal of cesium ion: combined experimental and density functional theoretical investigation, RSC Adv., 6, 47120-47129 (2016). https://doi.org/10.1039/C6RA05814K
  80. S. Sakamoto and Y. Kawase, Adsorption capacities of poly-${\gamma}$-glutamic acid and its sodium salt for cesium removal from radioactive wastewaters, J. Environ. Radioact., 165, 151-158 (2016). https://doi.org/10.1016/j.jenvrad.2016.10.004
  81. K. Seaton, I. Little, C. Tate, R. Mohseni, M. Roginskaya, V. Povazhniy, and A. Vasiliev, Adsorption of cesium on silica gel containing embedded phosphotungstic acid, Microporous Mesoporous Mater., 244, 55-66 (2017). https://doi.org/10.1016/j.micromeso.2017.02.025
  82. M. R. Awual, T. Yaita, T. Taguchi, H. Shiwaku, S. Suzuki, and Y. Okamoto, Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent, J. Hazard. Mater., 278, 227-235 (2014). https://doi.org/10.1016/j.jhazmat.2014.06.011
  83. M. R. Awual, Y. Miyazaki, T. Taguchi, H. Shiwaku, and T. Yaita, Encapsulation of cesium from contaminated water with highly selective facial organic-inorganic mesoporous hybrid adsorbent, Chem. Eng. J., 291, 128-137 (2016). https://doi.org/10.1016/j.cej.2016.01.109
  84. M. R. Awual, Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater, Chem. Eng. J., 303, 539-546 (2016). https://doi.org/10.1016/j.cej.2016.06.040
  85. J. Ahn, N. Y. Lim, J. S. Park, Y. Choi, and J. H. Jung, Fabrication of calix[4]arene-attached mesoporous ammonium molybdophosphate-silica hybrid and its application as an adsorbent for cesium ions, New J. Chem., 41, 3196-3203 (2017). https://doi.org/10.1039/C6NJ03533G