DOI QR코드

DOI QR Code

Core analysis of accident tolerant fuel cladding for SMART reactor under normal operation and rod ejection accident using DRAGON and PARCS

  • Pourrostam, A. (Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic)) ;
  • Talebi, S. (Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic)) ;
  • Safarzadeh, O. (Faculty of Engineering, Shahed University)
  • Received : 2020.04.05
  • Accepted : 2020.08.31
  • Published : 2021.03.25

Abstract

There has been a deep interest in trying to find better-performing fuel clad motivated by the desire to decrease the likelihood of the reactor barrier failure like what happened in Fukushima in recent years. In this study, the effect of move towards accident tolerant fuel (ATF) cladding as the most attracting concept for improving reactor safety is investigated for SMART modular reactor. These reactors have less production cost, short construction time, better safety and higher power density. The SiC and FeCrAl materials are considered as the most potential candidate for ATF cladding, and the results are compared with Zircaloy cladding material from reactor physics point of view. In this paper, the calculations are performed by generating PMAX library by DRAGON lattice physics code to be used for further reactor core analysis by PARCS code. The differential and integral worth of control and safety rods, reactivity coefficient, power and temperature distributions, and boric acid concentration during the cycle are analyzed and compared from the conventional fuel cladding. The rod ejection accident (REA) is also performed to study how the power changed in response to presence of the ATF cladding in the reactor core. The key quantitative finding can be summarized as: 20 ℃ (3%) decrease in average fuel temperature, 33 pcm (3%) increase in integral rod worth and cycle length, 1.26 pcm/℃ (50%) and 1.05 pcm/℃ (16%) increase in reactivity coefficient of fuel and moderator, respectively.

Keywords

References

  1. L.J. Ott, K.R. Robb, D. Wang, Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions q, J. Nucl. Mater. 448 (2014) 520-533, https://doi.org/10.1016/j.jnucmat.2013.09.052.
  2. J. Huang, N. Li, Y. Zhang, Q. Guo, J. Zhang, The safety analysis of a small pressurized water reactor utilizing fully ceramic microencapsulated fuel, Nucl. Eng. Des. 320 (2017) 250-257, https://doi.org/10.1016/j.nucengdes.2017.05.022.
  3. J. Chun, S. Lim, B. Chung, W. Lee, Safety evaluation of accident-tolerant FCM fueled core with SiC-coated zircalloy cladding for design-basis-accidents and beyond DBAs, Nucl. Eng. Des. 289 (2015) 287-295, https://doi.org/10.1016/j.nucengdes.2015.04.021.
  4. R. Liu, W. Zhou, J. Cai, Multiphysics modeling of accident tolerant fuelcladding U3Si2-FeCrAl performance in a light water reactor, Nucl. Eng. Des. 330 (2018) 106-116, https://doi.org/10.1016/j.nucengdes.2018.01.041.
  5. S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, L.L. Snead, Accident tolerant fuels for LWRs : a perspective q, J. Nucl. Mater. 448 (2014) 374-379, https://doi.org/10.1016/j.jnucmat.2013.12.005.
  6. N.M. George, R.T. Sweet, J.J. Powers, A. Worrall, K.A. Terrani, B.D. Wirth, G.I. Maldonado, Full-core analysis for FeCrAl enhanced accident tolerant fuel in boiling water reactors q, Ann. Nucl. Energy 132 (2019) 486-503, https://doi.org/10.1016/j.anucene.2019.04.025.
  7. J. Chun, B. Chung, G. Lee, K. Bae, Y. Kim, Y. Chung, K. Kim, Safety evaluation of small-break LOCA with various locations and sizes for SMART adopting fully passive safety system using MARS code, Nucl. Eng. Des. 277 (2014) 138-145, https://doi.org/10.1016/j.nucengdes.2014.06.030.
  8. Z. Chen, J. Cai, R. Liu, Y. Wang, Preliminary thermal hydraulic analysis of various accident tolerant fuels and claddings for control rod ejection accidents in LWRs, Nucl. Eng. Des. 331 (2018) 282-294, https://doi.org/10.1016/j.nucengdes.2018.03.007.
  9. K.A. Gamble, T. Barani, D. Pizzocri, J.D. Hales, K.A. Terrani, G. Pastore, An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions, J. Nucl. Mater. 491 (2017) 55-66, https://doi.org/10.1016/j.jnucmat.2017.04.039.
  10. Y. Deng, B. Qiu, Y. Wu, D. Zhang, W. Tian, S. Qiu, G.H. Su, Simulation on PelletCladding Mechanical Interaction (PCMI) of Accident Tolerant Fuel (ATF) with Coated Cladding, 2017, https://doi.org/10.1115/ICONE25-66774.
  11. R. Akbari-Jeyhouni, D. Rezaei Ochbelagh, A. Gharib, Assessment of an integral small modular reactor during rod ejection accident by using DRAGON/PARCS codes, Prog. Nucl. Energy 108 (2018) 136-143, https://doi.org/10.1016/j.pnucene.2018.05.010.
  12. H.K. Kim, S.H. Kim, Y.J. Chung, H.S. Kim, Thermal-hydraulic analysis of SMART steam generator tube rupture using TASS/SMR-S code, Ann. Nucl. Energy 55 (2013) 331-340, https://doi.org/10.1016/j.anucene.2013.01.007.
  13. J.H. Chun, K.H. Lee, Y.J. Chung, Assessment and SMART application of system analysis design code, TASS/SMR-S for SBLOCA, Nucl. Eng. Des. 254 (2013) 291-299, https://doi.org/10.1016/j.nucengdes.2012.09.029.
  14. Y.I. Kim, Y. Bae, Y.J. Chung, K.K. Kim, CFD simulation for thermal mixing of a SMART flow mixing header assembly, Ann. Nucl. Energy 85 (2015) 357-370, https://doi.org/10.1016/j.anucene.2015.05.019.
  15. K. Mehboob, M.S. Aljohani, Derivation of radiological source term of Korean design system-integrated modular advanced ReacTor (SMART), Ann. Nucl. Energy 119 (2018) 148-161, https://doi.org/10.1016/j.anucene.2018.04.044.
  16. K.M. Kim, B.I. Lee, H.H. Cho, J.S. Park, Y.J. Chung, Numerical study on thermohydrodynamics in the reactor internals of SMART, Nucl. Eng. Des. 241 (2011) 2536-2543, https://doi.org/10.1016/j.nucengdes.2011.04.032.
  17. Iaea, System-Integrated Modular Advanced Reactor (SMART), 2011. https://aris.iaea.org/PDF/SMART.pdf.
  18. S. Kamalpour, A.A. Salehi, H. Khalafi, N. Mataji-Kojouri, G. Jahanfarnia, Impact of integral burnable absorbers on SMART reactor behaviour under normal and anomalous operational conditions, Prog. Nucl. Energy 110 (2019) 51-63, https://doi.org/10.1016/j.pnucene.2018.09.005.
  19. Y.S. Kim, S.W. Bae, S. Cho, K.H. Kang, H.S. Park, Application of direct passive residual heat removal system to the SMART reactor, Ann. Nucl. Energy 89 (2016) 56-62, https://doi.org/10.1016/j.anucene.2015.11.025.
  20. B. Qiu, Y. Wu, Y. Deng, Y. He, T. Liu, G.H. Su, W. Tian, A comparative study on preliminary performance evaluation of ATFs under normal and accident conditions with FRAP-ATF code, Prog. Nucl. Energy 105 (2018) 51-60, https://doi.org/10.1016/j.pnucene.2017.12.010.
  21. J. Cai, Z. Chen, S. He, R. Liu, Research on thermal behaviors of several accident tolerant fuels based on 5×5 bundle subchannel model, Ann. Nucl. Energy 133 (2019) 9-20, https://doi.org/10.1016/j.anucene.2019.05.008.
  22. Gurgen, K. Shirvan, Estimation of coping time in pressurized water reactors for near term accident tolerant fuel claddings, Nucl. Eng. Des. 337 (2018) 38-50, https://doi.org/10.1016/j.nucengdes.2018.06.020.
  23. Smart Ssar, Standard Design Safety Analysis Report, Korea Atomic Energy Research Institute, 2010.
  24. G. Marleau, A. Hebert, R. Roy, A User Guide for Dragon Version 4. Technical Report IGE-294, Ecole Polytechnique de Montreal, 2016, 2016.
  25. T. Downar, Y. Xu, GenPMAXS Code for Generating the PARCS Cross-Section Interface File PMAXS (Draft), Purdue University, School of Nuclear Engineering, West Lafayette, USA, 2004.
  26. T.J. Downar, D. Lee, Y. Xu, T. Kozlowski, Theory Manual for the PARCS Neutronics Core Simulator, 2006.
  27. D.B. Pelowitz, MCNPX User's Manual, Version 2.6, Los Alamos National. Lab., 2011.
  28. M. Rahgoshay, O. Noori-Kalkhoran, Calculation of control rod worth and temperature reactivity coefficient of fuel and coolant with burn-up changes for VVRS-2 MWth nuclear reactor, Nucl. Eng. Des. 256 (2013) 322-331, https://doi.org/10.1016/j.nucengdes.2012.08.033.
  29. A.H. Fadaei, S. Setayeshi, Control rod worth calculation for VVER-1000 nuclear reactor using WIMS and CITATION codes, Prog. Nucl. Energy 51 (2009) 184-191, https://doi.org/10.1016/j.pnucene.2008.03.003.
  30. J.J. Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis, John Wiley & Sons, Inc., 1975.
  31. S. Glasstone, A. Sesonke, Nuclear Reactor Engineering, Van Nostrand Reinhold Company Inc., 1967.
  32. Lashkari, Reactivity power and temperature coefficients determination of the TRR, in: Int. Conf. Nucl, Energy New Eur., 2015, pp. 1-7.
  33. K. Mourtzanos, C. Housiadas, M. Antonopoulos-Domis, Calculation of the moderator temperature coefficient of reactivity for water moderated reactors, Ann. Nucl. Energy 28 (2001) 1773-1782, https://doi.org/10.1016/S0306-4549(01)00016-0.
  34. O. Safarzadeh, F. Saadatian-Derakhshandeh, A.S. Shirani, Calculation of reactivity coefficients with burn-up changes for VVER-1000 reactor, Prog. Nucl. Energy 81 (2015) 217-227, https://doi.org/10.1016/j.pnucene.2015.02.006.
  35. S. Pinem, T.M. Sembiring, Deswandri Tukiran, G.R. Sunaryo, Reactivity coefficient calculation for AP1000 reactor using the NODAL3 code, J. Phys. Conf. Ser. 962 (2018), https://doi.org/10.1088/1742-6596/962/1/012057.
  36. M.H. Rabir, Measurement of the power and temperature reactivity coefficients of the RTP TRIGA reactor, Nucl. Eng. Des. 265 (2013) 269-271, https://doi.org/10.1016/j.nucengdes.2013.09.005.

Cited by

  1. A fractional PID controller based on fractional point kinetic model and particle swarm optimization for power regulation of SMART reactor vol.377, 2021, https://doi.org/10.1016/j.nucengdes.2021.111137