Acknowledgement
This work was supported partly by the National Natural Science Foundation of China (Approved Number: 11775170 and 11735011).
References
- J. Ortensi, Y. Wang, A. Laurier, et al., A Newton solution for superhomogenization method: the PJFNK-SPH, Ann. Nucl. Energy 111 (2017) 579-594. https://doi.org/10.1016/j.anucene.2017.09.027
- A. Kavenoky, The SPH homogenization method, in: Proc. Specialists' Mtg. Homogenization Methods in Reactor Physics, International Atomic Energy Agency, Lugano, Switzerland, 1980, p. 181. November 13-15,1978, IAEATECDOC-231. International Atomic Energy Agency.
- A. Hebert, P. Benoist, A consistent technique for the global homogenization of a pressurized water reactor assembly, Nucl. Sci. Eng. 109 (4) (1991) 360-372. https://doi.org/10.13182/NSE109-360
- A. Hebert, A consistent technique for the pin-by-pin homogenization of a pressurized water reactor assembly, Nucl. Sci. Eng. 113 (3) (1993) 227-238. https://doi.org/10.13182/NSE92-10
- A. Hebert, G. Mathonniere, Development of a third-generation superhomogeneisation method for the homogenization of a pressurized water reactor assembly, Nucl. Sci. Eng. 115 (2) (1993) 129-141. https://doi.org/10.13182/NSE115-129
- A. Yamamoto, Y. Kitamura, Y. Yamane, Cell homogenization methods for pinby-pin core calculations tested in slab geometry, Ann. Nucl. Energy 31 (8) (2004) 825-847. https://doi.org/10.1016/j.anucene.2003.12.001
- U. Grundmann, S. Mittag, Super-homogenisation factors in pinwise calculations by the reactor dynamics code dyn3d, Ann. Nucl. Energy 38 (10) (2011) 2111-2119. https://doi.org/10.1016/j.anucene.2011.06.030
- N. Sugimura, A. Yamamoto, Resonance treatment based on ultra-fine-group spectrum calculation in the AEGIS code, J. Nucl. Sci. Technol. 44 (7) (2007) 958-966. https://doi.org/10.3327/jnst.44.958
- Y. Li, B. Zhang, Q. He, D. Wang, H. Wu, L. Cao, W. Shen, Development and Verification of PWR-core fuel management calculation code system NECPBamboo: Part I Bamboo-Lattice, Nucl. Eng. Des. 335 (2018) 432-440. https://doi.org/10.1016/j.nucengdes.2018.05.030
- A. Hebert, A reformulation of the transport-transport SPH equivalence technique, in: 7th International Conference on Modeling and Simulation in Nuclear Science and Engineering, 2015. Ottawa, Canada.
- K. Sawada, T. Endo, A. Yamamoto, Application of Various Superhomogenization (SPH) Methods for the Method of Characteristics, 2019, pp. 1534-1543. M&C 2019, Portland, USA, August 25-29.
- L. Mao, I. Zmijarevic, K. Routsonis, Application of the SPH method to account for the angular dependence of multigroup resonant cross sections in thermal reactor calculations, Ann. Nucl. Energy 124 (2019) 98-118. https://doi.org/10.1016/j.anucene.2018.09.031
- E. Nikitin, E. Fridman, K. Mikityuk, On the use of the SPH method in nodal diffusion analyses of SFR cores, Ann. Nucl. Energy 85 (2015) 544-551. https://doi.org/10.1016/j.anucene.2015.06.007
- J.F. Vidal, P. Archier, B. Faure, et al., APOLLO3 homogenization techniques for transport core calculations-application to the ASTRID CFV core, Nucl. Eng. Tec. 49 (7) (2017) 1379-1387. https://doi.org/10.1016/j.net.2017.08.014
- L. Wei, Y. Zheng, H. Wu, Improvement of few-group cross-section generation in fast reactor analysis system SARAX, Ann. Nucl. Energy 132 (2019) 149-160. https://doi.org/10.1016/j.anucene.2019.04.026
- Y. Zheng, X. Du, Z. Xu, S. Zhou, Y. Liu, C. Wan, L. Xu, SARAX: a new code for fast reactor analysis part I: methods, Nucl. Eng. Des. 340 (2018) 421-430. https://doi.org/10.1016/j.nucengdes.2018.10.008
- Y. Zheng, L. Qiao, Z. Zhai, X. Du, Z. Xu, SARAX: a new code for fast reactor analysis part II: verification, validation and uncertainty quantification, Nucl. Eng. Des. 331 (2018) 41-53. https://doi.org/10.1016/j.nucengdes.2018.02.033
- A. Yamamoto, Utilization of discontinuity factor in integro-differential type of Boltzmann transport equation, in: Proc. PHYSOR-2010, Pittsburgh, USA, May 9-14, 2010, American Nuclear Society, 2010 [CD-ROM].
- L. Xu, L. Cao, Y. Zheng, et al., Development of a new parallel SN code for neutron-photon transport calculation in 3-D cylindrical geometry, Prog. Nucl. Energy 94 (2017) 1-21. https://doi.org/10.1016/j.pnucene.2016.09.005
- S.C. Zhou, H.C. Wu, L.Z. Cao, et al., LAVENDER: a steady-state core analysis code for design studies of accelerator driven subcritical reactors, Nucl. Eng. Des. 278 (2014) 434-444. https://doi.org/10.1016/j.nucengdes.2014.07.027
- OECD/NEA, Benchmark for Neutronic Analysis of Sodium-Cooled Fast Reactor Cores with Various Fuel Types and Core Sizes, vol. 9, NEA/NSC/R, 2015.
- P.K. Romano, N.E. Horelik, B.R. Herman, et al., OpenMC: a state-of-the-art Monte Carlo Code for research and development, Ann. Nucl. Energy 82 (2015) 90-97. https://doi.org/10.1016/j.anucene.2014.07.048
Cited by
- Development of SARAX code system for full-range spectrum adaptability in advanced reactor analysis vol.165, 2021, https://doi.org/10.1016/j.anucene.2021.108664