• Title/Summary/Keyword: Fuel cycle

Search Result 1,817, Processing Time 0.025 seconds

Performance Evaluation of Rough Rice Low Temperature Drying Using Heat Pump (열펌프를 이용한 벼의 저온건조성능평가)

  • Kim, Hoon;Han, Jae-Woong
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.308-313
    • /
    • 2009
  • This study was conducted to design and fabricate a heat pump that can produce some weather conditions similar to those of the dry season of the rough rice in Korea, and to investigate basic performances of the apparatus. During the drying test, the amount of energy consumption and drying characteristics were measured at four different temperature levels ranging between 20$^{\circ}C$ and 50${^{\circ}C}$. In the psychrometric chart, the freezing capacity and refrigerant circulation ratio of the heat pump were 173 kJ/kg and 49.6 kg/hr, respectively. Therefore, coefficient of performance was 5.5, which was superior to that of refrigerant R-22 (4.0) in standard refrigeration cycle. In addition, the time to reach target drying temperature (30${^{\circ}C}$) and relative humidity (40%) were 6 minutes and 7 minutes, respectively. Temperature differences between the drying temperature and the rice were 1.5${^{\circ}C}$ and 8.5${^{\circ}C}$ at the drying temperatures of 21.9${^{\circ}C}$ and 48.7${^{\circ}C}$, respectively. This result demonstrated that the increased temperature of the rice in the drying section decreased sufficiently in the tempering section. At the drying temperatures of 21.9, 30.7 38.8, and 48.7${^{\circ}C}$, drying rates were 0.29, 0.61, 0.85, and 1.26%/hr, respectively, which were similar to those of commercial dryer. In addition, the amounts of energy consumption were 325, 667, 692, and 776 kJ/kg, respectively. These results showed that this dryer saved up to 86% of energy consumption compared with the commercial dryer, which uses 4,000-5,000 kJ/kg of fossil fuel.

Study on the Experiences of Subsurface Soil Remediation at Commercial Nuclear Power Plants in the United States (미국 원전의 심층토양 제염사례 연구)

  • Lee, Hyoung-Woo;Kim, Ju-Youl;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.213-226
    • /
    • 2019
  • Regulatory agency and licensee are preparing for the site restoration of Kori unit 1, the first commercial NPP in Korea, scheduled for 2031. Developing regulatory guidelines and strategies is essential for effective restoration work. Unfortunately, Korea does not have experience of site restoration of commercial NPPs. Therefore, it is important to review cases from experienced countries to establish a strategy and regulatory standards. The U.S. has had numerous soil remediation experiences using RESRAD and MARSSIM. However, formalized evaluation methodologies for subsurface soil have not yet been established in MARSSIM. This survey focused on subsurface soil remediation by reviewing the five decommissioned NPPs under regulation of the US NRC. Overall process of remediating a contaminated subsurface soil and groundwater was reviewed to identify considerations and lessons that could be applicable in Korea. In addition, an applied methodology for evaluation of contaminated subsurface soil and related major issues between regulatory agency and licensees were reviewed in detail to support establishment of remediation strategy for Kori unit 1.

Effect of AlF3 on Zr Electrorefining Process in Chloride-Fluoride Mixed Salts for the Treatment of Cladding Hull Wastes (폐 피복관 처리를 위한 염소계-불소계 혼합용융염 내 지르코늄 전해정련공정에서 삼불화알루미늄의 효과 연구)

  • Lee, Chang Hwa;Kang, Deok Yoon;Lee, Sung-Jai;Lee, Jong-Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • Zr electrorefining is demonstrated herein using Zirlo tubes in a chloride-fluoride mixed molten salt in the presence of $AlF_3$. Cyclic voltammetry reveals a monotonic shift in the onset of metal reduction kinetics towards positive potential and an increase in intensity of the additional peaks associated with Zr-Al alloy formation with increasing $AlF_3$ concentration. Unlike the galvanostatic deposition mode, a radial plate-type Zr growth is evident at the top surface of the salt during Zr electrorefining at a constant potential of -1.2 V. The diameter of the plate-type Zr deposit gradually increases with increasing $AlF_3$ concentration. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX) and X-ray photoelectron spectroscopy (XPS) analyses for the plate-type Zr deposit show that trace amount of Al is incorporated as Zr-Al alloys with different chemical compositions between the top and bottom surface of the deposit. Addition of $AlF_3$ is effective in lowering the residual salt content in the deposit and in improving the current efficiency for Zr recovery.

Screening Assessment of Radiological Effect From Clearance of Decommissioning Concrete Waste Based Upon Recycling Framework of Construction Waste in Korea (국내 건설폐기물 재활용 체계를 반영한 해체 콘크리트 폐기물 자체처분 방사선 영향 예비평가)

  • Lim, Kun-Su;Cheong, Jae Hak;Whang, Joo Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.441-454
    • /
    • 2018
  • Since the permanent shutdown of Kori Unit 1 in 2017, a full-scale decommissioning project for a commercial nuclear reactor has been approaching. It is estimated that about 160,000 t of low-activity concrete waste will be produced from decommissioning of one unit of this commercial nuclear power reactor. Accordingly, it is necessary to review whether the effectiveness of the current regulatory framework for clearance waste (i.e. waste stream that meets activity concentration guidelines or dose criteria for clearance set forth in NSSC Notice No. 2017-65) can be maintained for the clearance of a bulk amount of concrete waste. In this regard, the IAEA SRS No. 44, which was used as a basis for revision of the Korean clearance regulations, is thoroughly analyzed and the radiological effects from four different clearance scenarios, along with input values and parameters derived from industrial practices in Korea, were evaluated. Though it is shown that the maximum annual dose from most recycling scenarios will be less than the clearance dose criterion for the normal scenario (i.e. an order of magnitude of $0.01mSv{\cdot}y^{-1}$), the radiation dose, estimated with conservative assumptions for the banking scenario, may exceed the above clearance dose criteria. Therefore, for safe and sustainable clearance of the bulk amount of concrete waste, it is required to diversify the concrete waste processors, perform more detailed site-specific assessment, and apply limiting conditions to the banking scenario.

Revised Crackling Core Model Accounting for Fragmentation Effect and Variable Grain Conversion Time : Application to UO2 Sphere Oxidation (파편화 효과와 결정립 가변 전환시간을 고려한 Crackling Core Model의 개선 : UO2 구형 입자의 산화거동으로의 적용)

  • Lee, Ju Ho;Cho, Yung-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.411-420
    • /
    • 2018
  • This study presents a revised crackling core model for the description of $UO_2$ sphere oxidation in air atmosphere. For close reproduction of the sigmoid behavior exhibited in $UO_2$ to $U_3O_8$ conversion, the fragmentation effect contributing to the increased reactive surface area and the concept of variable grain conversion time were considered in the model development. Under the assumptions of two-step successive reaction of $UO_2{\rightarrow}U_3O_7{\rightarrow}U_3O_8$ and final grain conversion time equivalent to ten times the initial grain conversion time, the revised model showed good agreement with the experimental data measured at 599 - 674 K and a lowest deviation when compared with Nucleation and Growth model and AutoCatalytic Reaction model. The evaluated activation energy at 100% conversion to $U_3O_8$, $57.6kJ{\cdot}mol^{-1}$, was found to be closer to the experimentally extrapolated value than to the value determined in AutoCatalytic Reaction model, $48.6kJ{\cdot}mol^{-1}$.

Review of Research on Chloride-Induced Stress Corrosion Cracking of Dry Storage Canisters in the United States (미국의 건식저장 캐니스터에서의 CISCC 연구에 대한 검토)

  • Park, Hyoung-Gyu;Park, Kwang-Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.455-472
    • /
    • 2018
  • It is important to study how to manage dry storage casks of spent nuclear fuels (SNF), because wet storage spaces for SNF will shortly be at full capacity in the Republic of Korea. The US has operated a dry storage cask system for several decades, and has carried out significant studies into how to successfully manage dry storage cask for SNF. This type of expertise and experience is currently lacking in the Republic of Korea. The degradation of dry casks is an important issue that must be considered. In particular, chloride-induced stress corrosion cracking (CISCC) is known to lead to the release of radioisotopes from canisters. The U.S. Department of Energy, U.S. Nuclear Regulatory Commission, and the Electric Power Research Institute have undertaken research into the CISCC mechanism. In addition, Sandia National Laboratories (SNL) has extensively researched CISCC and how to manage it in dry storage canisters. In this review paper, the probabilistic model proposed by the SNL is analyzed and, based on this model, US-based CISCC research is reviewed in detail. This paper will inform the management of dry cask storage of SNF from light water reactors in austenite stainless steel canisters in the Republic of Korea.

A Preliminary Study on the Evaluation of Internal Exposure Effect by Radioactive Aerosol Generated During Decommissioning of NPPs by Using BiDAS (BiDAS를 적용한 원전 해체 공정 시 발생되는 방사성 에어로졸의 내부피폭 영향평가 사전 연구)

  • Song, Jong Soon;Lee, Hak Yun;Kim, Sun Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.473-478
    • /
    • 2018
  • Radioactive aerosol generated in cutting and melting work during the NPP decommissioning process can cause internal exposure to body through workers' breath. Thus, it is necessary to assess worker internal exposure due to the radioactive aerosol during decommissioning. The actually measured value of the working environment is needed for accurate assessment of internal exposure, but if it is difficult to actually measure that value, the internal exposure dose can be estimated through recommended values such as the fraction of amount of intake and the size of particles suggested by the International Committee on Radiological Protection (ICRP). As for the selection of particle size, this study applied a value of $5{\mu}m$, which is the size of particles considering the worker recommended by the ICRP. As for the amount of generation, the amount of intake was estimated using data on the mass of aerosol generated in a melting facility at a site in Kozloduy, Bulgaria. In addition, using these data, this study calculated the level of radioactivity in the worker's body and stool and conducted an assessment of internal exposure using the BiDAS computer code. The internal exposure dose of Type M was 0.0341 mSv, that of Type S was 0.0909 mSv. The two types of absorption showed levels that were 0.17% and 0.45% of the domestic annual dose limit, respectively.

A Study on the GHG Reduction Newest Technology and Reduction Effect in Power Generation·Energy Sector (발전 에너지 업종의 온실가스 감축 신기술 조사 및 감축효과 분석)

  • Kim, Joo-Cheong;Shim, So-Jung
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.349-358
    • /
    • 2013
  • In this study, the newest technology available to reduce GHG emissions, which can be applicable in energy industries of the future that has large reduction obligations by energy target management and large intensity of GHG emissions, has been investigated by searching the technical characteristics of each technology. The newest technology to reduce GHG emissions in the field of power generation and energy can be mainly classified into the improvement of efficiency, CCS, and gas combined-cycle technology. In order to improve the reliability of the GHG emission factor obtained from the investigation process, it has been compared to the technology-specific GHG emission factor derived from the estimated amount of emissions. Then the GHG abatement measures, using the derived estimation of factor, by using the newest technology to reduce GHG emissions have been predicted. As a result, the GHG reduction rate by technology of CCS development has been expected to be the largest more than 30%, and the abatement rate by technology of coal gasified fuel cell and pressurized fluidized-bed thermal power generation has been showed more than 20%. If the effective introduction of the newest technology and the study of its characteristics is continued, and properly applied for future GHG emissions, it can be prospected that the national GHG reduction targets can be achieved in cost-efficient way.

Determination of Location and Depth for Groundwater Monitoring Wells Around Nuclear Facility (원자력이용시설 주변의 지하수 감시공의 위치와 심도 선정)

  • Park, Kyung-Woo;Kwon, Jang-Soon;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.245-261
    • /
    • 2019
  • Radioactive contaminant from a nuclear facility moves to the ecosystem by run-off or groundwater flow. Among the two mechanisms, contaminant plume through a river can be easily detected through a surface water monitoring system, but radioactive contaminant transport in groundwater is difficult to monitor because of lack of information on flow path. To understand the contaminant flow in groundwater, understanding of the geo-environment is needed. We suggest a method to decide on monitoring location and points around an imaginary nuclear facility by using the results of site characterization in the study area. To decide the location of a monitoring well, groundwater flow modeling around the study area was conducted. The results show that, taking account of groundwater flow direction, the monitoring well should be located at the downstream area. Also, monitoring sections in the monitoring well were selected, points at which groundwater moves fast through the flow path. The method suggested in the study will be widely used to detect potential groundwater contamination in the field of oil storage caverns, pollution by agricultural use, as well as nuclear use facilities including nuclear power plants.

A Review on Measurement Techniques and Constitutive Models of Suction in Unsaturated Bentonite Buffer (불포화 벤토나이트 완충재의 수분흡입력 측정기술 및 구성모델 고찰)

  • Lee, Jae Owan;Yoon, Seok;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.329-338
    • /
    • 2019
  • Suction of unsaturated bentonite buffers is a very important input parameter for hydro-mechanical performance assessment and design of an engineered barrier system. This study analyzed suction measurement techniques and constitutive models of unsaturated porous media reported in the literature, and suggested suction measurement techniques and constitutive models suitable for bentonite buffer in an HLW repository. The literature review showed the suction of bentonite buffer to be much higher than that of soil, as measured by total suction including matric suction and osmotic suction. The measurement methods (RH-Cell, RH-Cell/Sensor) using a relative humidity sensor were suitable for suction measurement of the bentonite buffer; the RH-Cell /Sensor method was more preferred in consideration of the temperature change due to radioactive decay heat and measurement time. Various water retention models of bentonite buffers have been proposed through experiments, but the van Genuchten model is mainly used as a constitutive model of hydro-mechanical performance assessment of unsaturated buffers. The water characteristic curve of bentonite buffers showed different tendencies according to bentonite type, dry density, temperature, salinity, sample state and hysteresis. Selection of water retention models and determination of model input parameters should consider the effects of these controlling factors so as to improve overall reliability.