Performance Evaluation of Rough Rice Low Temperature Drying Using Heat Pump

열펌프를 이용한 벼의 저온건조성능평가

  • Kim, Hoon (Food Marketing Research Group, Korea Food Research Institute) ;
  • Han, Jae-Woong (Faculty of Life Science and Technology, Sungkyunkwan University)
  • Received : 2009.10.12
  • Accepted : 2009.11.14
  • Published : 2009.11.30

Abstract

This study was conducted to design and fabricate a heat pump that can produce some weather conditions similar to those of the dry season of the rough rice in Korea, and to investigate basic performances of the apparatus. During the drying test, the amount of energy consumption and drying characteristics were measured at four different temperature levels ranging between 20$^{\circ}C$ and 50${^{\circ}C}$. In the psychrometric chart, the freezing capacity and refrigerant circulation ratio of the heat pump were 173 kJ/kg and 49.6 kg/hr, respectively. Therefore, coefficient of performance was 5.5, which was superior to that of refrigerant R-22 (4.0) in standard refrigeration cycle. In addition, the time to reach target drying temperature (30${^{\circ}C}$) and relative humidity (40%) were 6 minutes and 7 minutes, respectively. Temperature differences between the drying temperature and the rice were 1.5${^{\circ}C}$ and 8.5${^{\circ}C}$ at the drying temperatures of 21.9${^{\circ}C}$ and 48.7${^{\circ}C}$, respectively. This result demonstrated that the increased temperature of the rice in the drying section decreased sufficiently in the tempering section. At the drying temperatures of 21.9, 30.7 38.8, and 48.7${^{\circ}C}$, drying rates were 0.29, 0.61, 0.85, and 1.26%/hr, respectively, which were similar to those of commercial dryer. In addition, the amounts of energy consumption were 325, 667, 692, and 776 kJ/kg, respectively. These results showed that this dryer saved up to 86% of energy consumption compared with the commercial dryer, which uses 4,000-5,000 kJ/kg of fossil fuel.

국내 벼 건조기간의 기상조건에 적합한 열펌프를 설계, 제작하여 기본 성능을 측정하고, 건조온도 20-50${^{\circ}C}$ 범위에서 벼 건조실험을 통하여 건조특성 및 소요에너지를 분석하였다. 열펌프는 건압축 냉동 사이클에서 냉동효과는 173.8 kJ/kg이었으며, 냉매순환량은 49.6 kg/hr이었다. 따라서, 성능계수는 5.5로 표준냉동사이클에서 냉매 R-22의 성능계수 4.0에 비해 높은 값을 나타내었으며, 목표 건조공기의 온도 30${^{\circ}C}$ 및 상대습도 40%에 도달하는 시간은 6분 및 7분으로 만족할 만한 수준이었다. 건조온도와 곡온과의 온도차이는 건조온도 21.9${^{\circ}C}$에서는 약 1.5${^{\circ}C}$, 건조온도 48.7${^{\circ}C}$에서는 약 8.5${^{\circ}C}$로서, 건조실에서 상승한 곡온은 템퍼링실에서 충분한 냉각이 이루어지는 것으로 판단되었다. 건조온도 21.9, 30.7 38.8 및 48.7${^{\circ}C}$에서 건조속도는 0.29, 0.61, 0.85 및 1.25%/hr로 나타나 상용건조기와 유사한 수준이었다. 건조온도 21.9${^{\circ}C}$에서 소요에너지는 325 kJ/kg, 건조온도 30.7, 38.8 및 48.7${^{\circ}C}$에서는 667, 692 및 776 kJ/kg로 나타나 외기조건에 따라 건조소요에너지의 차이가 발생했지만, 화석연료를 사용하는 상용 화력건조기의 벼 건조소요에너지 4,000-5,000 kJ/kg에 비해 평균 86% 절감되는 것으로 나타났다.

Keywords

References

  1. ASHRAE. 1989. ASHRAE Handbook of Fundamentals. American.Society. of Heating, Refrigerating and Air-ConditioningEngineers, New York, USA
  2. Bak CK. 1981. Dry air generator for on-farm barley drying. ASAE paper No. 81-3023. ASAE, St. Joseph, MI, USA
  3. Bake J, Vas A. 1994. Testing the drying process of shelled maizeon aspects of nutritional quality and thermal efficiency. DryingTechnol. 12: 1007-1027 https://doi.org/10.1080/07373939408960986
  4. Brooker DB, Bakker-Arkema FW, Hall CW. 1992. Drying andstorage of grains and oilseeds. An Avi Book, NW, USA, pp. 7-10, 269-271
  5. Daikoku M, Sawamura N, Kobayashi K, Chosa T, Sasaki Y. 2000.Controlled humidity air drying of soybean kernels with highmoisture content using circulation dryer. J. Jap. Soc. Agr. Mach.62: 140-148
  6. Hogan MR, Ayers DL, Muller RE, Foster GH, Rall EC, DoeringOC. 1983. Heat pump for low-temperature grain drying. T.ASAE. 26: 1234-1238
  7. Ishibashi S, Tanaka S, Fukimoto Y. 1971. Studies on cooling andcold air drying for grain storage. J. Jap. Soc. Agr. Mach. 34:242-251
  8. Keum DH, Kim H, Hong SJ. 2002. Far-infrared ray drying characteristicsof rough rice. J. Kor. Soc. Agr. Mach. 27: 45-50 https://doi.org/10.5307/JBE.2002.27.1.045
  9. Keum DH, Lee YK, Lee KS, Hwang JK. 1987. Study on theoptimum operating conditions of rice circulating dryer usingsimulation. Res. Rept. RDA. pp. 373-390
  10. Keum DH, Park ST. 1996. Minimum specific airflow rate requirementsfor natural air drying of rough rice in korea. J. Kor. Soc.Agr. Mach. 21: 60-71
  11. Kim MS, Kim SR. 1986. Resistance to airflow of grain asaffected by grain moisture content. J. Kor. Soc. Agr. Mach. 11:55-65
  12. Regalado MJC, Bekki E. 2000. Varietal differences in drying rateand fissure occurrence in heated air drying of rough rice. J. Jap.Soc. Agr. Mach. 62: 81-91
  13. Sharp JR. 1982. A review of low temperature drying simulationmodels. J. Agr. Eng. Res. 27: 169-190 https://doi.org/10.1016/0021-8634(82)90060-9
  14. Sosle V, Raghavan GSV, Kitter R. 2003. Low-temperature dryingusing a versatile heat pump dehumidifier. Drying Techol. 21:539-554 https://doi.org/10.1081/DRT-120018461
  15. Strommen I, Kramer K. 1994. New applications of heat pumps ondrying processes. Drying Technol. 12: 889-901 https://doi.org/10.1080/07373939408960000
  16. Wang D, Chang CS. 2001. Energy efficiency of a new heat pumpsystem for drying grain. T. ASAE. 44: 1745-1750
  17. Wei CL, Tawarazako S, Morita K. 1994. Dependence of the dryingrate of rough rice on drying air humidity for dehumidifyingdrying. Jap. Soc. Agr. Struc. 24: 223-229
  18. Yamashita R. 1993. New technology in grain postharvesting. FarmMachinery Industrial Research Cooperation, Kyoto, Japan, pp.36-38