• Title/Summary/Keyword: Fuel Flow

Search Result 2,602, Processing Time 0.034 seconds

Eigenvalue Design Sensitivity Analysis To Redesign Spacer Grid Location In Nuclear Fuel Assembly (핵연료집합체 지지격자 위치결정을 위한 고유치 민감도해석)

  • 박남규;이성기;김형구;최기성;이준노;김재원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.705-709
    • /
    • 2002
  • The spacer grids in nuclear fuel assembly locate and align the fuel rods with respect to each other. They provide axial and lateral restraint against an excessive rod motion mainly caused by coolant flow. It is understood that each rod Is supported by multiple spacer grid. In such a case, it is important to determine spacer grid span so as to avoid resonance between the natural frequency of the fuel rods and excitation frequency. Actually dynamic characteristics of the fuel rods can be improved by assigning adequate spacer grid locations. When a dynamic performance of the structure is to be improved, design sensitivity analysis plays an important role as like many structural redesign problems. In this work, a shape design concept, different from conventional design, was applied to the problem. According to the theory shape can be a design parameter and optimal shape design can be found. This study concentrates on eigenvalue design sensitivity of the fuel rod supported by multiple spacer grids to determine optimal spacer grids positions.

  • PDF

Experimental Investigation of NOX Reduction using a Hybrid Fuel Lean Reburning System (NOx 저감을 위한 하이브리드 연료희박 재연소 연구)

  • Kim, Hak-Young;Baek, Seung-Wook;Hwang, Chang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.283-290
    • /
    • 2010
  • The main goal of this study is to examine the use of a hybrid -fuel lean reburning system with air staging for $NO_X$ reduction. The experimental variables include the reburn fuel fraction, sizes of reburn- fuel-injection nozzles, oxygen enrichment ratio, and location of reburn- fuel- injection. The effect of the flow field induced by air- staging combustion on $NO_X$ reduction is considered, and then, the $NO_X$ reduction rate is compared with only fuel lean reburning system. On the basis of the effectiveness of each De-$NO_X$ process, the advantage of using the hybrid reburning system with air staging is determined and discussed.

Dynamic performances of output power of wind turbine and fuel-cell hybrid system (풍력-연료전지 하이브리드 시스템 출력의 동특성 분석)

  • Moon, Dae-Seong;Kim, Yun-Seong;Seo, Jae-Jin;Won, Dong-Jun;Park, Young-Ho;Moon, Seung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.545-546
    • /
    • 2007
  • A hybrid system that uses a parallel combination of wind turbine and fuel cell is modeled. Wind energy source is characterized by its intermittent and variable nature. The output power generated by the fuel cell is stable and can be properly controlled. Therefore, fuel cell system can be added to the wind turbine system for the purpose of ensuring continuous power flow. Fuel cell helps to compensate power and regulate the frequency in power system. Simulation results show the effect of the hybrid system on power regulation. The excess power generated by the wind turbine was directed to an electrolyzer to generate hydrogen and the power deficit was compensated by the fuel cell.

  • PDF

Research Activities about Characteristics of Fuel Injection and Combustion Using Endothermic Fuel (흡열연료를 이용한 연료분사 및 연소 특성 연구동향)

  • Choi, Hojin;Lee, Hyungju;Hwang, Kiyoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.73-80
    • /
    • 2013
  • Endothermic fuel utilizing technology is considered as a unique practical method of hypersonic vehicle for long distance flight. Research activities about characteristics of fuel injection and combustion using cracked by endothermic reaction are reviewed. Studies on characterization of supercritical fuel injection and mixing within supersonic flow field are surveyed. Researches on combustion characteristics such as ignition delay time, laminar burning velocity and combustion efficiency at supersonic model combustor are reviewed. In addition, domestic research activities on endothermic fuel are surveyed.

A Study on Fuel NOx Emission Characteristics in Coal Combustion (석탄 연소시 연료 NOx 배출 특성에 관한 연구)

  • Kim, Sung Su;Choi, Hyun Jin;Lee, Hyun Dong;Kim, Jae-Kwan;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.675-680
    • /
    • 2009
  • This article describes NO emission characteristics in SM coal combustion. Combustion experiments was performed in the method of increasing temperature after feeding coal and feeding coal after increasing temperature. NOx emission is in inverse proportion to combustion temperature at the fuel rich condition and it was caused by conversion fuel N to $N_{2}$ at the strong reduction condition. In addition, feeding gas flow rate increased as total fuel NOx increase by conversion of fuel N to NO at the oxidation condition. It could be separated in total fuel-N, volatile-N, char-N to NO according to analysis of total fuel NO emission from char combustion at each temperature. In the result, almost total NOx emission was caused by volatile-N in SM-coal.

Numerical Studies of a Separator for Stack Temperature Control in a Molten Carbonate Fuel Cell (용융탄산염 연료전지 스택 온도 조절을 위한 분리판에 관한 수치 해석 연구)

  • Kim, Do-Hyung;Kim, Beom-Joo;Lim, Hee-Chun
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.305-312
    • /
    • 2011
  • The use of a separator to control stack temperature in a molten carbonate fuel cell was studied by numerical simulation using a computational fluid dynamics code. The stack model assumed steady-state and constant-load operation of a co-flow stack with an external reformer at atmospheric pressure. Representing a conventional cell type, separators with two flow paths, one each for the anode and cathode gas, were simulated under conditions in which the cathode gas was composed of either air and carbon dioxide (case I) or oxygen and carbon dioxide (case II). The results showed that the average cell potential in case II was higher than that in case I due to the higher partial pressures of oxygen and carbon dioxide in the cathode gas. This result indicates that the amount of heat released during the electrochemical reactions was less for case II than for case I under the same load. However, simulated results showed that the maximum stack temperature in case I was lower than that in case II due to a reduction in the total flow rate of the cathode gas. To control the stack temperature and retain a high cell potential, we proposed the use of a separator with three flow paths (case III); two flow paths for the electrodes and a path in the center of the separator for the flow of nitrogen for cooling. The simulated results for case III showed that the average cell potential was similar to that in case II, indicating that the amount of heat released in the stack was similar to that in case II, and that the maximum stack temperature was the lowest of the three cases due to the nitrogen gas flow in the center of the separator. In summary, the simulated results showed that the use of a separator with three flow paths enabled temperature control in a co-flow stack with an external reformer at atmospheric pressure.

The Effect of Fluid Flow on Power Density in a Horizontal-flow Microbial Fuel Cell (수평 흐름형 미생물 연료전지에서 유체의 흐름 형태에 따른 전력수율 평가)

  • Lee, Chae-Young;Park, Su-Hee;Song, Young-Chae;Yoo, Kyu-Seon;Chung, Jae-Woo;Han, Sun-Kee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.1
    • /
    • pp.39-44
    • /
    • 2013
  • This study evaluated the effect of fluid flow on the power density in a horizontal-flow microbial fuel cell (MFC). The maximum power densities in four types of flow induced by different channel types in the anode chamber were investigated. The fluid flow at each channel was analyzed using tracer tests. Results of polarization curves showed that the maximum power densities of case 1, 2, 3 and 4 were 95.7, 129.1, 190.9 and 114.2 mW/m2, respectively. Case 3 with a set of guide walls where flow had an S type-like shape showed the highest power density. Based on the Morrill Dispersion Index (MDI) value of case 4, microbial activity would be enhanced since the reactor allows even distribution of substrate but the overflow occurrence would not guarantee stable performance. Therefore, case 3 could be an effective reactor type for MFC because of high electricity generation and stable performance.

Flow Regime Transition in Air-Molten Carbonate Salt Two-Phase Flow System (공기-탄산용융염 이상흐름계에서의 흐름영역전이)

  • Cho, Yung-Zun;Yang, Hee-Chul;Eun, Hee-Chul;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.481-487
    • /
    • 2009
  • In this of study, effects of input air velocity(0.05~0.22 m/sec) and molten carbonate salt temperature ($870{\sim}970^{\circ}C$) on flow regime transition have been studied by adopting a drift-flux model of air holdup and a stochastic analysis of differential pressure fluctuations in an air-molten sodium carbonate salt two-phase system(molten salt oxidation process). Air holdup where the flow regime transition begins was determined by air holdup-drift flux plot. The air holdup value which the flow regime transition begins was increased with increasing molten carbonate salt temperature due to the decrease of viscosity and surface tension of molten carbonate salt. To characterize the flow regime transition more quantitatively, differential pressure fluctuation signals have been analyzed by adopting the stochastic method such as phase space portraits and Kolmogorov entropy, The Kolmogorov entropy decreased with an increasing of molten carbonate salt temperature but increased gradually with an increase in an air velocity, however, it exhibited different tendency with the flow regime and the air velocity value which flow regime transition begins was same to the results of drift-flux analysis.

Analysis of Cylinder Swirl Flow and Lean Combustion Characteristics of 3rd Generation LPLI(Liquid Phase LPG Injection) Engine (제3세대 LPLI 엔진 연소실내 스월유동 및 희박연소 특성 해석)

  • Kang, Kern-Yong;Lee, Jin-Wook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.26-33
    • /
    • 2007
  • The intake swirl motion, as one of dominant effects for an engine combustion. is very effective for turbulence enhancement during the compression process in the cylinder of 2-valve engine. Because the combustion flame speed is determined by the turbulence that is mainly generated from the mean flow of the charge air motion in intake port system. This paper describes the experimental results of swirl flow and combustion characteristics by using the oil spot method and back-scattering Laser Doppler velocimeter (LDV) in 2-valve single cylinder transparent LPG engine using the liquid phase LPG injection. For this. various intake port configurations were developed by using the flow box system and swirl ratios for different intake port configurations were determined by impulse swirl meter in a steady flow rig test. And the effects of intake swirl ratio on combustion characteristics in an LPG engine were analyzed with some analysis parameters that is swirl ratio. mean flow coefficient, swirl mean velocity fuel conversion efficiency. combustion duration and cyclic variations of indicated mean effective pressure(IMEP). As these research results, we found that the intake port configuration with swirl ratio of 2.0 that has a reasonable lean combustion stability is very suitable to an $11{\ell}$ heavy-duty LPG engine with liquid phase fuel injection system. It also has a better mean flow coefficient of 0.34 to develope a stable flame kernel and to produce high performance. This research expects to clarify major factor that effects on the design of intake port efficiently with the optimized swirl ratio for the heavy duty LPG engine.

Study on the Exhaust Heat Recovery Equipment in a Factory - On the Performance of a U-shape Multitube Heat Exchanger - (공장폐열(工場廢熱) 회수장치(回收裝置)에 관한 연구(硏究) -U자형(字型) 다관식(多管式) 열교환기(熱交換機)의 성능(性能)에 관하여-)

  • Kim, Yung Bok;Song, Hyun Kap
    • Journal of Biosystems Engineering
    • /
    • v.8 no.2
    • /
    • pp.49-61
    • /
    • 1983
  • U shape multitube heat exchanger was equipped in the flue to recover the exhaust heat from the boiler system. The fluids of the exhaust heat recovery equipment were the flue gas as the hot fluid, and the water as the cold fluid. The flow geometry of the fluids was cross flow - two pass, the hot fluid being mixed and the cold fluid unmixed. The results of the theoretical and the experimental analysis and the economic evaluation are summarized as follows. 1) The heat exchanger effectiveness and the temperature efficiency of the hot fluid were about 35% when the fuel consumption rate was 140 - 150 L/15min. The temperature efficiency for the cold fluid ranged from 3.0% to 4.5%. The insulation efficiency ranged from 85% to 98%, which was better than the KS air preheater insulation efficiency of 90%. 2) The relationship between the fuel consumption rate, F, and the outlet temperature, $T_{h2}$, of the flue gas from the heat exchanger was $T_{h2}$ = 0.927F + 110. In order to prevent the low temperature corrosion from the coagulation of $SO_3$, it is necessary to maintain the fuel consumption rate above 82 L/15min. 3) The ratio of the exhaust heat from the boiler system to the total energy consumption was about 14.5%. With the installation of the exhaust heat recovery equipment, the energy recovery ratio to the exhaust heat was about 25%. Accordingly, about 3.6% of the total fuel consumption was estimated to be saved. 4) Economic analysis indicated that the installation of the exhaust heat recovery equipment was feasible to save the energy, because the capital reocvery period was only 10 months when the fuel consumption rate was 80 L/15min. 4 months when it was 160 L/15min. 5) Based on the theoretical and the experimental analysis, it was estimated to save the energy of about 18 million Won per year, if four heat exchangers are installed in a factory. 6) A further study is recommended to identify the relationship among the flow rate of the exhaust gas, the size of the heat exchanger and the capacity of the air preheater. For a maximum heat recovery from the exhaust gas an automatic control system is required to control the flow rate of the cold fluid depending on the boiler load.

  • PDF