A Study on Fuel NOx Emission Characteristics in Coal Combustion

석탄 연소시 연료 NOx 배출 특성에 관한 연구

  • Kim, Sung Su (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University) ;
  • Choi, Hyun Jin (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University) ;
  • Lee, Hyun Dong (Fossil Fuel Combustion Power Generation Laboratory) ;
  • Kim, Jae-Kwan (Fossil Fuel Combustion Power Generation Laboratory) ;
  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Kyonggi University)
  • 김성수 (경기대학교 대학원 환경에너지시스템공학과) ;
  • 최현진 (경기대학교 대학원 환경에너지시스템공학과) ;
  • 이현동 (한국전력공사 전력연구원 수화력발전연구소) ;
  • 김재관 (한국전력공사 전력연구원 수화력발전연구소) ;
  • 홍성창 (경기대학교 환경에너지시스템공학과)
  • Received : 2009.09.10
  • Accepted : 2009.10.07
  • Published : 2009.12.10

Abstract

This article describes NO emission characteristics in SM coal combustion. Combustion experiments was performed in the method of increasing temperature after feeding coal and feeding coal after increasing temperature. NOx emission is in inverse proportion to combustion temperature at the fuel rich condition and it was caused by conversion fuel N to $N_{2}$ at the strong reduction condition. In addition, feeding gas flow rate increased as total fuel NOx increase by conversion of fuel N to NO at the oxidation condition. It could be separated in total fuel-N, volatile-N, char-N to NO according to analysis of total fuel NO emission from char combustion at each temperature. In the result, almost total NOx emission was caused by volatile-N in SM-coal.

SM탄(인도네시아산)을 이용하여 NOx 배출 특성을 조사하였다. 실험은 석탄 거치 후 승온하며 연소하는 방법과 승온 후 석탄을 주입하는 방법을 이용하였다. 산소희박 분위기에서는 배출 NOx가 연소온도와 반비례의 관계를 나타내었으며 이는 fuel N이 강한 환원 분위기에서 $N_{2}$로 전화되기 때문인 것으로 나타났다. 또한 주입 가스량 증가 시에는 산화 분위기에 의해 fuel N이 NO로 산화되어 total fuel NO가 증가하는 경향을 나타내었다. 제조 온도에 따른 char의 연소시 발생되는 NO의 분석으로 total fuel N, volatile-N, char-N이 각각 NO로 전화되는 부분으로 구분될 수 있었으며 실험결과 본 연구에 사용된 SM탄은 total NOx의 대부분이 volatile-N에 기인하는 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. 국가에너지위원회, 제 1차 국가에너지기본계획 (2008)
  2. Korea power exchange, 2008년도 발전설비현황, Korea power exchange Planning & Administration division, Power planning department, Seoul (2008)
  3. J. Biener, M. Baumer, J. Wang, and R. J. Madix, Surf. sci., 450, 12 (2000) https://doi.org/10.1016/S0039-6028(99)01216-9
  4. R. P. Vander Lans, P. Glarborg, and K. Dam-Johansen, Prog. Energy Combust. Sci., 349, 23 (1997)
  5. H. Bosch and F. Janssen, Catal. Today, 2, 369 (1988) https://doi.org/10.1016/0920-5861(88)80002-6
  6. J. N. Armor, Catal. Today, 26, 99 (1995) https://doi.org/10.1016/0920-5861(95)00132-Y
  7. P. Zelenka, W. Cartellieri, and P. Herzog, Appl. Catal., 10, 3 (1996) https://doi.org/10.1016/0926-3373(96)00021-5
  8. Y. B. Zel'dovich, Acta Phys. Chim., URSS, 61, 654 (1946)
  9. C. P. Fenimore, 13th Symp. on combustion, The combustion institute, p. 373 (1971)
  10. C. P. Fenimore and G. W. Jones, J. Phys. Chem., 61, 654 (1957) https://doi.org/10.1021/j150551a034
  11. J. P. Smart and D. J. Morgan, Fuel, 73, 1437 (1994) https://doi.org/10.1016/0016-2361(94)90058-2
  12. R. R. Raine, C. R. Stone, and J. Gould, Combust. Flame, 241, 102 (1995)
  13. K. Y. Kim, S. Y. No, and Y. J. Kim, 최신 연소공학, Donghwa technology publishing, Seoul (2003)
  14. S. Niksa, Energy Fuels, 9, 467 (1995) https://doi.org/10.1021/ef00051a011
  15. W. Han, C. S. Park, S. I. Choi, I. H. Lee, and H. S. Yang, The Korean Society of Combustion, 4, 85 (1999)
  16. S. L. Chen, M. P. Heap, D. W. Pershing, and G. B. Matin, 19th Symp. on combustion, The Combustion Institute, 1271 (1982)
  17. J. E. Johnsson, Fuel, 73, 1398 (1994) https://doi.org/10.1016/0016-2361(94)90055-8
  18. K. H. Han, D. J. Oh, J. I. Ryu, and G. T. Jin, Trans. of the KSME(B), 24, 677 (2000)
  19. G. H. Jang, I. G. Chang, C. Y. Sun, M. H. Chon, and G. M. Yang, 19th KOSKO Symp., 149 (1999)
  20. W. Li, I. M. Lazar, Y. J. Wan, S. J. Butala, Y. Shen, A. Malik, and M. L. Lee, Energy Fuels, 11, 945 (1997) https://doi.org/10.1021/ef960176f