• Title/Summary/Keyword: Fuel Flow

Search Result 2,589, Processing Time 0.024 seconds

An Experimental Study on Breakdown of Fuel Consumption on a Component Basis in a Gasoline Engine Vehicle (가솔린 차량의 각 요소별 연료소모량 분석을 위한 실험적 연구)

  • 유정철;송해박;이종화;유재석;박영무;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.153-161
    • /
    • 2004
  • A vehicle fuel economy is one of the most important issues in view of environmental regulation and customer's needs. In order to improve the vehicle fuel economy, great efforts has been carried out on the components bases. However, systematic analysis of vehicle fuel consumption is necessary for the further improvement of vehicle fuel economy. In this paper, a methodology for the breakdown of vehicle fuel consumption was studied and proposed for systematic analysis of the vehicle fuel economy. The energy equation for the vehicle power train was set up for the analysis of the vehicle fuel economy and simplified to be calculated or estimated using the measured data in a vehicle. The amount of fuel that was used in vehicle components under arbitrary driving conditions was quantified.

Vibration Analysis of Beam Supported by Plate Type Springs Considering a Contact (접촉해석이 연계된 판형 스프링 지지보의 진동해석)

  • 최명환;강흥석;윤경호;송기남
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.384-392
    • /
    • 2003
  • The fuel rods in the Pressurized water reactor are continuously supported by a spring system called a spacer grid which is one of the main structural components for the fuel rod cluster(fuel assembly). The fuel rods vibrate within the reactor due to coolant flow. Since the vibration, which is called flow-induced vibration(FIV) can wear away the surface of the fuel rod, it is important to understand it's vibration characteristics. In this paper, the vibration analyses and the tests for the dummy rods supported by New Doublet(ND) spacer grids are described. A new FE model which reflects the contact area between the rod and ND spacer grid spring is developed to replace the previous one by which a good agreement could not be obtained with the vibration test. The natural frequency and mode shape calculated by both the Previous FE model and the new one are compared with those of experiment for a single-spanned rod supported by two ND spacer grids. The results of the new model showed good agreement with the experiment compared with those of previous model. In addition. the new FE model is applied to the vibration analysis for the dummy rod of 2.189 mm tall continuously supported by five ND spacer grids. It is also obtained that the analysis results of the new FE model well agreed to experiment ones as the single-spanned rod.

Performance and Thermal Endurance Tests of a High Pressure Pump Fueled with DME (DME를 연료로 하는 고압펌프의 성능 및 내열 특성 평가)

  • BAEK, BUM-GI;LIM, OCK-TAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.89-95
    • /
    • 2020
  • The main scope of this paper is to see if the conventional pump can be properly used for a specific fuel, Di-methyl Ether (DME) despite of its low lubricity and high reactivity in the experimental conditions. A wobble plate type fuel pump was connected to the common rail to verify that the pump could deliver the fuel at the required pressure and resultantly DME could be used as fuel without modifying the original pump. At each required pressure (30 Mpa, 35 Mpa, 40 Mpa, 45 Mpa, and 50 Mpa), the pump met the pressure required by the common rail. In addition, pump performance experiments tended to follow the usual performance curve while the flow rate decreased as the pressure increased. The maximum flow rate of the pump was 470 kg/h at 30 Mpa and all measurements were taken with keeping DME temperature below 60℃.

A Strategy for Homogeneous Current Distribution in Direct Methanol Fuel Cells through Spatial Variation of Catalyst Loading

  • Park, Sang-Min;Kim, Sang-Kyung;Peck, Dong-Hyun;Jung, Doo-Hwan
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.331-337
    • /
    • 2017
  • A simple strategy is proposed herein for attaining uniform current distribution in direct methanol fuel cells by varying the catalyst loading over the electrode. In order to use the same total catalyst amount for a serpentine flow field, three spatial variation types of catalyst loading were selected: enhancing the cathode catalyst loading (i) near the cathode outlet, (ii) near the cathode inlet, and (iii) near the lateral areas. These variations in catalyst loading are shown to improve the homogeneity of the current distribution, particularly at lower currents and lower air-flow rates. Among these three variations, increased loading near the lateral areas was shown to contribute most to achieving a homogenous current distribution. The mechanism underlying each catalyst loading variation method is different; very high catalyst-loading is shown to decrease the homogeneity of the distribution, which may be caused by water management in the thick catalyst layer thereof.

Combustion and Exhaust Emission Characteristics by the Change of Intake Air Temperature in a Single Cylinder Diesel Engine (단기통 디젤엔진에서 흡기온도변화에 따른 연소 및 배기특성)

  • Shin, Dalho;Park, Suhan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.336-343
    • /
    • 2017
  • Intake air conditions, such as air temperature, pressure, and humidity, are very important parameters that influence engine performance including combustion and emissions characteristics. The purpose of this study is to investigate the effects of intake air temperature on combustion and exhaust emissions characteristics in a single cylinder diesel engine. In this experiment, an air cooler and a heater were installed on the intake air line and a gas flow controller was installed to maintain the flow rate. It was found that intake air temperature induced the evaporation characteristics of the fuel, and it affects the maximum in-cylinder pressure, IMEP(indicated mean effective pressure), and fuel consumption. As the temperature of intake air decreases, the fuel evaporation characteristics deteriorate even as the fuel temperature has reached the auto-ignition temperature, so that ignition delay is prolonged and the maximum pressure of cylinder is also reduced. Based on the increase in intake air temperature, nitrogen oxides(NOx) increased. In addition, the carbon monoxide(CO) and unburned hydrocarbons(UHC) increased due to incomplete fuel combustion at low intake air temperatures.

The Effect of Piston Bowl Shape on Behavior of Vapor Phase in a GDI Engine (직분식 가솔린기관 내에서 피스톤 형상이 연료혼합기 거동에 미치는 영향)

  • Hwang, Pil-Su;Gang, Jeong-Jung;Kim, Deok-Jul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.614-621
    • /
    • 2002
  • This study was performed to investigate the behavior of vapor phase of fuel mixtures with different piston bowl shapes(F, B and R-type) in a optically accessible engine. The images of liquid and vapor phases were captured in the motoring engine using exciplex fluorescence method. Fuel was injected into atmospheric nitrogen to prevent quenching phenomenon by oxygen. Injection pressure was 5.1MPa. Two dimensional spray fluorescence image of vapor phase was acquired to analyze spray behaviors and fuel distribution inside of cylinder. Four injection timings were set at BTDC 90$^{\circ}$, 80$^{\circ}$, 70$^{\circ}$, and 60$^{\circ}$. With a fuel injection timing of BTDC 90$^{\circ}$, fuel-rich mixture level in the center region was highest in a B-type piston. With a fuel injection timing of BTDC 60$^{\circ}$, R-type piston was best. R-type piston shape was suitable under enhanced swirl ratio and late injection condition and B-type piston shape was right in a weak swirl ratio. It was found that the piston bowl shape affected the mixture stratification inside of cylinder.

The Effect of Piston Bowl Shape on Behavior of Vapor Phases in a GDI Engine (피스톤 형상에 따른 직분식 가솔린기관 내에서의 연료혼합기 거동특성 연구)

  • Hwang, Pil-Su;Kang, Jeong-Jung;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.915-920
    • /
    • 2001
  • This study was performed to investigate the behavior of vapor phase of fuel mixtures with different piston bowl shapes(F, B, and R-type) in a optically accessible engine. The images of liquid and vapor phases were captured in the motoring engine using exciplex fluorescence method. Fuel was injected into atmospheric nitrogen to prevent quenching phenomenon by oxygen. Injection pressure is 5.1MPa. Two dimensional spray fluorescence image of vapor phases was acquired to analyze spray behaviors and fuel distribution inside of cylinder. Four injection timings were set at BTDC $90^{\circ},\;80^{\circ},\;70^{\circ},\;and\;60^{\circ}$. With a fuel injection timing of BTDC $90^{\circ}$, fuel-rich mixture level in the center region was highest in a B-type piston. With a fuel injection timing of BTDC $60^{\circ}$, R-type piston was best. R-type piston shape was suitable under enhanced swirl ratio and late injection condition and B-type piston shape was right in a weak swirl ratio. It was found that the piston bowl shape affected the mixture stratification inside of cylinder.

  • PDF

Optimal Sizing of the Manifolds in a PEM Fuel Cell Stack using Three-Dimensional CFD Simulations (3차원 CFD 시뮬레이션을 활용한 고분자전해질 연료전지 스택의 매니폴드 크기 최적화)

  • Jeong, Jeehoon;Han, In-Su;Shin, Hyun Khil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.386-392
    • /
    • 2013
  • Polymer electrolyte membrane (PEM) fuel cell stacks are constructed by stacking several to hundreds of unit cells depending on their power outputs required. Fuel and oxidant are distributed to each cell of a stack through so-called manifolds during its operation. In designing a stack, if the manifold sizes are too small, the fuel and oxidant would be maldistributed among the cells. On the contrary, the volume of the stack would be too large if the manifolds are oversized. In this study, we present a three-dimensional computational fluid dynamics (CFD) model with a geometrically simplified flow-field to optimize the size of the manifolds of a stack. The flow-field of the stack was simplified as a straight channel filled with porous media to reduce the number of computational meshes required for CFD simulations. Using the CFD model, we determined the size of the oxidant manifold of a 30 kW-class PEM fuel cell stack that comprises 99 cells. The stack with the optimal manifold size showed a quite uniform distribution of the cell voltages across the entire cells.

A Study on the Variation of Unit Price of Hydrogen Fuel by Difference of Fuel Measuring Method (수소 충전소 연료계량방법의 차이에서 발생하는 연료단가의 상이점에 대한 고찰)

  • LEE, TAECK HONG;KANG, BYOUNG WOO;LEE, EUN WOUNG;BAE, CHUNG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.3
    • /
    • pp.279-286
    • /
    • 2017
  • Korea government decides to build one hundred hydrogen refueling stations (HRS) until 2020 and tries to disseminate HRS and boosts HRS market in korea. Naepo HRS in chungnam province has been operated for last one full year of 2016 and recorded 2,520 times full charge for the hydrogen fuel cell powered vehicles and total 6,016 kg hydrogen fueling for the 25 units of hydrogen fuel cell powered vehicles. Raw fuel of hydrogen from tube trailer measured by pressure, converting into weight of hydrogen and shows 19.6% surplus with final charged weight by dispenser. This result is caused measuring errors. Measured charged errors between dispenser and Mass flow meter was determined 13.13%.

Vibration Analysis of Beam Supported by Springs Considering a Contact (접촉해석이 연계된 스프링 지지보의 진동해석)

  • 최명환;강홍석;송기남;윤경호;김형규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1216-1221
    • /
    • 2002
  • The fuel rods in the pressurized water reactor are continuously supported by a spring system called a spacer grid which is one of the main structural components for the fuel rod cluster (fuel assembly). The fuel rods are vibrating within the reactor due to coolant flow. Since the vibration, what is called flow-induced vibration(FIV), can wear away the surface of the fuel rod, it is important to understand the vibration characteristics of it. In this paper, the vibration analyses and the tests for the dummy rods supported by New Doublet(ND) spacer grids are described. A new FE model which reflects the contact area between the rod and ND spacer grid spring is developed to replace the previous one by which a good agreement could not be obtained with the vibration test. The natural frequency and mode shape calculated by both the previous FE model and the new one are compared with those of experiment fur a single-spanned rod supported by two ND spacer grids. The results by the new model show good agreement to experiment as compared with the ones by previous model. In addition, the new FE model is applied to the vibration analysis fur the dummy rod of 2.19 m tall continuously supported by five ND spacer grids. It is also obtained that the analysis results by the new FE model well agree to experiment ones as the single-spanned rod.

  • PDF