DOI QR코드

DOI QR Code

A Strategy for Homogeneous Current Distribution in Direct Methanol Fuel Cells through Spatial Variation of Catalyst Loading

  • Park, Sang-Min (SFR NSSS System Design Division, Korea Atomic Energy Research Institute) ;
  • Kim, Sang-Kyung (Fuel Cell Laboratory, Korea Institute of Energy Research) ;
  • Peck, Dong-Hyun (Fuel Cell Laboratory, Korea Institute of Energy Research) ;
  • Jung, Doo-Hwan (Fuel Cell Laboratory, Korea Institute of Energy Research)
  • Received : 2017.09.22
  • Accepted : 2017.11.27
  • Published : 2017.12.31

Abstract

A simple strategy is proposed herein for attaining uniform current distribution in direct methanol fuel cells by varying the catalyst loading over the electrode. In order to use the same total catalyst amount for a serpentine flow field, three spatial variation types of catalyst loading were selected: enhancing the cathode catalyst loading (i) near the cathode outlet, (ii) near the cathode inlet, and (iii) near the lateral areas. These variations in catalyst loading are shown to improve the homogeneity of the current distribution, particularly at lower currents and lower air-flow rates. Among these three variations, increased loading near the lateral areas was shown to contribute most to achieving a homogenous current distribution. The mechanism underlying each catalyst loading variation method is different; very high catalyst-loading is shown to decrease the homogeneity of the distribution, which may be caused by water management in the thick catalyst layer thereof.

Keywords

References

  1. M. Noponen, T. Mennola, M. Mikkola, T. Hottinen, P. Lund, J. Power Sources, 2002, 106(1-2), 304-312. https://doi.org/10.1016/S0378-7753(01)01063-1
  2. M. Mench, C. Y. Wang, J. Electrochem. Soc., 2003, 150(1), A79-A85. https://doi.org/10.1149/1.1526108
  3. H. Sun, G. Zhang, L. J. Guo, H. Liu, J. Power Sources, 2006, 158(1), 326-332. https://doi.org/10.1016/j.jpowsour.2005.09.046
  4. V. Saarinen, O. Himanen, T. Kallio, G. Sundholm, K. Kontturi, J. Power Sources, 2007, 163(2), 768-776. https://doi.org/10.1016/j.jpowsour.2006.09.016
  5. F. Ay, A. Ata, H. Dohle, T. Sener, H. Gorgun, J. Power Sources, 2007, 167(2), 391-397. https://doi.org/10.1016/j.jpowsour.2007.02.035
  6. A. A. Kulikovsky, H. Schmitz, K. Wippermann, Electrochemical and Solid-state Lett., 2007, 10, B126-B129. https://doi.org/10.1149/1.2745083
  7. S.-M. Park, S.-K. Kim, S. Lim, D.-H. Jung, D.-H. Peck, W.-H. Hong, J. Power Sources, 2009, 194(2), 818-823. https://doi.org/10.1016/j.jpowsour.2009.06.052
  8. S.-M. Park, S.-K. Kim, S. Lim, D.-H. Jung, D.-H. Peck, W.-H. Hong, J. Power Sources, 2011, 196(15), 6110-6117. https://doi.org/10.1016/j.jpowsour.2011.03.051
  9. M. Santis, S. A. Freunberger, A. Reiner, F. N. Buchi, Electrochim. Acta, 2006, 51(25), 5383-5393. https://doi.org/10.1016/j.electacta.2006.02.008
  10. D. P. Wilkinson, J. St-Pierre, J. Power Sources, 2003, 113(1), 101-108. https://doi.org/10.1016/S0378-7753(02)00486-X
  11. M. Prasanna, E. Cho, H.-J. Kim, I.-H. Oh, T.-H. Lim, S.-A. Hong, J. Power Sources, 2007, 166(1), 53-58. https://doi.org/10.1016/j.jpowsour.2006.12.076