• 제목/요약/키워드: Fuel Cycle

검색결과 1,791건 처리시간 0.031초

후행 핵연료주기 경제성 평가의 불확실성 사례 (Uncertainty Cases in Economic Evaluation of Back-End Nuclear Fuel Cycle)

  • 김형준;조천형;이경구
    • 방사성폐기물학회지
    • /
    • 제6권2호
    • /
    • pp.141-145
    • /
    • 2008
  • 후행 핵연료주기 경제성 평가는 추정 비용의 불확실성, 평가 대상기간의 장기성, 적용 할인율에 따른 계산결과의 변동성 등 많은 불확실성을 내포하고 있기 때문에 평가기관 또는 평가자에 따라 그 결과가 서로 상이하다. 본고에서는 지금까지 수행된 주요 경제성 평가 연구들을 조사/분석하여 그 특징과 한계를 알아봄으로써 현재 국내에서 추진되고 있는 사용후핵연료 공론화 및 후행 핵연료주기 정책 연구 추진에 기초자료로 활용될 수 있도록 하고자 하였다. 분석 결과 사용후핵연료 재활용 옵션에 비해 직접처분 옵션이 유리하나, 입력 자료로 사용된 파라미터 값에 따라 결과의 불확실성이 많이 나타나 이 부분에 대한 추가적인 연구가 필요하다는 사실을 알 수 있었다.

  • PDF

PROSPECTIVE ON DEVELOPMENT OF NUCLEAR POWER AND THE ASSOCIATED FUEL CYCLE IN CHINA

  • Gu Zhongmao;Liu Changxin;Fu Manchang
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 Proceedings of The 6th korea-china joint workshop on nuclear waste management
    • /
    • pp.156-164
    • /
    • 2005
  • The challenges China is facing in energy security are briefly discussed. Then, the development of nuclear power in China in the first half of 21 st century is envisioned, and it is expected that Generation-3 PWR nuclear power plants (NPPs) would be the leading units of nuclear power in the coming $30\~40$ years. As part of the nuclear power program, the R&D work on nuclear fuel cycle is generally proposed.

  • PDF

파이로 프로젝트에 프로젝트 관리 적용 방안 (Application of Project Management on Pyro Project)

  • 김정국;김혁종;고원일;구정회;남효온
    • 시스템엔지니어링학술지
    • /
    • 제13권2호
    • /
    • pp.26-33
    • /
    • 2017
  • Pyro project, one of complex project, is now under research and development. To manage this kind project successfully, it is essential to apply the processes of technical management (TM) based on systems engineering (SE) and project management (PM). In this paper, the project management processes from ISO-21500 standard, PMBOK guide, and PRINCE2 guide were reviewed, and then some common PM for the large national R&D project were selected. An integrated technical management and project management frame work was finally established and suggested for Pyro project.

연료전지 하이브리드 자동차의 연료 경제성 및 Life cycle 비용 분석 (Fuel economy and Life Cycle Cost Analysis of Fuel Cell Hybrid Vehicle)

  • 정귀성;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제13권4호
    • /
    • pp.287-296
    • /
    • 2002
  • 현재 자동차의 문제점을 해결할 수 있는 가장 착실한 엔진은 수소를 이용한 연료 전지라고 판단된다. 연료전지는 화학적 에너지를 전기적 에너지로 직접 변환하는 장치이다. 순수한 연료전지 차량과 연료전지 하이브리드 차량을 비교 분석하였다. 연료전지 하이브리드 차량에서 고려하여야할 점은 효율, 연료경제성, 출력 특성 등이 있다. FUDS 싸이클 시뮬레이션 비교를 하면 하이브리드화가 순수 연료전지 차량 보다 효율이 높다. 이는 회생 제동 에너지를 이용할 수 있으며 battery를 이용하여 연료전지를 효율적인 영역에서 작동하게 할 수 있기 때문이다. Life cycle 비용은 연료전지의 크기, 연료전지의 가격, 수소의 가격 등에 지배적인 영향을 받는다. 연료전지의 가격이 고가이면 하이브리드화가 유리하나, 연료전지의 가격이 400$/kW 이하가 되면 순수한 연료전지 자동차가 비용면에서 유리 하다.

핵주기 공정에서의 이온성 액체 활용 기술 개요 (Overview on Ionic Liquid Application Technologies for Back-end Fuel Cycle Processes)

  • 김기섭;박병흥
    • 융복합기술연구소 논문집
    • /
    • 제3권2호
    • /
    • pp.1-6
    • /
    • 2013
  • The ionic liquids are known to potential alternative solvents capable of replacing the commercial solvents in various processes including those in nuclear fuel cycle. As to the material, a number of studies have already reviewed the interesting results and addressed the spectroscopic as well as electrochemical behaviors of metal elements included in spent nuclear fuels. It has found that the important properties of metal ions in TBP dissolved ILs have led the development of alternative technologies to traditional solvent extraction processes. On the other hand, the electrochemical deposition of metal ions in ILs have been investigated for the application of the solvents to aqueous as well as to non-aqueous processes. In this work, a review on the application of ILs in nuclear fuel cycle is briefly presented to understand the notable researches on ILs focusing on aqueous processes.

  • PDF

APPLICATION OF A GENETIC ALGORITHM FOR THE OPTIMIZATION OF ENRICHMENT ZONING AND GADOLINIA FUEL (UO2/Gd2O3) ROD DESIGNS IN OPR1000s

  • Kwon, Tae-Je;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • 제44권3호
    • /
    • pp.273-282
    • /
    • 2012
  • A new effective methodology for optimizing the enrichment of low-enriched zones as well as gadolinia fuel ($UO_2/Gd_2O_3$) rod designs in PLUS7 fuel assemblies was developed to minimize the maximum peak power in the core and to maximize the cycle lifetime. An automated link code was developed to integrate the genetic algorithm (GA) and the core design code package of ALPHA/PHOENIX-P/ANC and to generate and evaluate the candidates to be optimized efficiently through the integrated code package. This study introduces an optimization technique for the optimization of gadolinia fuel rod designs in order to effectively reduce the peak powers for a few hot assemblies simultaneously during the cycle. Coupled with the gadolinia optimization, the optimum enrichments were determined using the same automated code package. Applying this technique to the reference core of Ulchin Unit 4 Cycle 11, the gadolinia fuel rods in each hot assembly were optimized to different numbers and positions from their original designs, and the maximum peak power was decreased by 2.5%, while the independent optimization technique showed a decrease of 1.6% for the same fuel assembly. The lower enrichments at the fuel rods adjacent to the corner gap (CG), guide tube (GT), and instrumentation tube (IT) were optimized from the current 4.1, 4.1, 4.1 w/o to 4.65, 4.2, 4.2 w/o. The increase in the cycle lifetime achieved through this methodology was 5 effective full-power days (EFPD) on an ideal equilibrium cycle basis while keeping the peak power as low as 2.3% compared with the original design.

An Integrated Multicriteria Decision-Making Approach for Evaluating Nuclear Fuel Cycle Systems for Long-term Sustainability on the Basis of an Equilibrium Model: Technique for Order of Preference by Similarity to Ideal Solution, Preference Ranking Organization Method for Enrichment Evaluation, and Multiattribute Utility Theory Combined with Analytic Hierarchy Process

  • Yoon, Saerom;Choi, Sungyeol;Ko, Wonil
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.148-164
    • /
    • 2017
  • The focus on the issues surrounding spent nuclear fuel and lifetime extension of old nuclear power plants continues to grow nowadays. A transparent decision-making process to identify the best suitable nuclear fuel cycle (NFC) is considered to be the key task in the current situation. Through this study, an attempt is made to develop an equilibrium model for the NFC to calculate the material flows based on 1 TWh of electricity production, and to perform integrated multicriteria decision-making method analyses via the analytic hierarchy process technique for order of preference by similarity to ideal solution, preference ranking organization method for enrichment evaluation, and multiattribute utility theory methods. This comparative study is aimed at screening and ranking the three selected NFC options against five aspects: sustainability, environmental friendliness, economics, proliferation resistance, and technical feasibility. The selected fuel cycle options include pressurized water reactor (PWR) once-through cycle, PWR mixed oxide cycle, or pyroprocessing sodium-cooled fast reactor cycle. A sensitivity analysis was performed to prove the robustness of the results and explore the influence of criteria on the obtained ranking. As a result of the comparative analysis, the pyroprocessing sodium-cooled fast reactor cycle is determined to be the most competitive option among the NFC scenarios.

The nuclear fuel cycle code ANICCA: Verification and a case study for the phase out of Belgian nuclear power with minor actinide transmutation

  • Rodriguez, I. Merino;Hernandez-Solis, A.;Messaoudi, N.;Eynde, G. Van den
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2274-2284
    • /
    • 2020
  • The Nuclear Fuel Cycle Code "ANICCA" has been developed by SCK•CEN to answer particular questions about the Belgian nuclear fleet. However, the wide range of capabilities of the code make it also useful for international or regional studies that include advanced technologies and strategies of cycle. This paper shows the main features of the code and the facilities that can be simulated. Additionally, a comparison between several codes and ANICCA has also been made to verify the performance of the code by means of a simulation proposed in the last NEA (OECD) Benchmark Study. Finally, a case study of the Belgian nuclear fuel cycle phase out has been carried out to show the possible impact of the transmutation of the minor actinides on the nuclear waste by the use of an Accelerator Driven System also known as ADS. Results show that ANICCA accomplishes its main purpose of simulating the scenarios giving similar outcomes to other codes. Regarding the case study, results show a reduction of more than 60% of minor actinides in the Belgian nuclear cycle when using an ADS, reducing significantly the radiotoxicity and decay heat of the high-level waste and facilitating its management.

Analysis of Remote Operation involved in Spent Nuclear Fuel Conditioning Process using its Virtual Mockup

  • Yoon, Ji-Sup;Kim, Sung-Hyun;Song, Tai-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.840-845
    • /
    • 2004
  • The remote operation of the Advanced Spent Fuel Conditioning Process (ACP) is analyzed by using the 3D graphic simulation tools. Since the spent nuclear fuel, which is a high radioactive material, is processed in the ACP, the ACP equipment is operated in intense radiation fields as well as in a high temperature. Thus, the equipment is operated in a remote manner and should be designed with consideration for the remote handling and maintenance. Also suitable remote handling technology needs to be developed along with the design of the process concepts. For this we developed a graphic simulator, which provides the capability of verifying the remote operability of the ACP without the fabrication of the process equipment. In other words, by applying virtual reality to the remote maintenance operation, a remote operation task can be simulated in the graphic simulator, not in the real environment. The graphic simulator will substantially reduce the cost of the development of the remote handling and maintenance procedure as well as the process equipment, while at the same time developing a remote maintenance concept that is more reliable, easier to implement, and easier to understand.

  • PDF

핵융합 공정주기에서의 생산 계획 최적화 (Mathematical Modeling of Scheduling Problems for the Fusion Fuel Cycle)

  • 이서영;하진국;이인범;이의수
    • Korean Chemical Engineering Research
    • /
    • 제58권4호
    • /
    • pp.596-603
    • /
    • 2020
  • 본 연구에서는 화학공정 최적화에 사용되는 생산계획최적기법을 도입하여 핵융합 공정에서의 삼중수소 재고량을 최소로 유지하는 수학적 모델을 구축하여 최적 운전 시나리오를 도출하였다. 핵융합 발전을 위한 공정 중 연료주기 공정(fuel cycle)은 반응연료인 중수소와 삼중수소를 저장 하고 공급하는 시스템과 핵융합 반응 배가스로부터 이를 회수 및 분리하는 세부 공정들로 구성되어 있다. 이들 공정들은 삼중수소가 방사성 물질이라는 것을 제외하면 대부분 촉매반응과 분리공정으로 이루어져 화공플랜트에 적용된 기술과 유사한 특성이 많아 화학공정에 사용되는 스케줄링 기법을 통해 최적 운전 시나리오를 도출 가능하다. 본 연구에서는 핵융합로의 다양한 장치의 특성을 반영해서, 펌프내부의 삼중수소량을 최소로 하는 최적 재생주기를 구하고, 구해진 최적 재생주기 결과를 반영하여 후단의 트리튬 플랜트에서의 최적 운전 시나리오를 확인해 보았다. 구축된 모델은 실제 토카막 시나리오에 적용되어 ITER 연료주기 내 공정의 연료흐름 및 밸런스 분석에 활용되었다.