• Title/Summary/Keyword: Frost properties

Search Result 108, Processing Time 0.026 seconds

The Properties of Temperature History of Concrete with Surface Insulating Material in Cold Weather Concreting (한중콘크리트 시공시 표면 단열재 변화에 따른 콘크리트의 온도이력 특성)

  • 문학용;신동안;김경민;김기철;오선교;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.7-11
    • /
    • 2003
  • This study investigate the hydration heat history with variation of surface insulating material in cold weather concreting. According to the results, the temperature of concrete lowers below zero in 24hours, so early frost damage occurs in the case of exposure and 1 fold bubble sheet, but the lowest temperature keeps above zero, so a adiabatic effect is very favorable in the case of double bubble sheet and 부직포. Compressive strength of core specimen at 7 and 28 days is highest In the case of double bubble sheet and 부직포. But, considering convenience of construction and economical efficiency, it is thought that the most effective surface insulating material is 1 fold bubble sheet +blanket.

  • PDF

Experimental Study of the Frosting Behavior on Various Plain Plate (여러 종류의 재질을 이용한 평판상 착상 거동에 대한 실험적 연구)

  • Lee, Jang-Seok;Jhee, Sung;Park, Jin-Koo;Lee, Kwan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1576-1581
    • /
    • 2004
  • An experimental study has been carried out to investigate the frosting behaviors of thermally conductive plastic(PBT based resin) resin by comparing with those of aluminum and some plastic(PTFE based resin) test specimens. It is found that the frosting behavior of plastic specimens with 1 mm thickness show similar trend with aluminum except PTFE. The properties of frost formed on the specimens are affected by both thermal conductivityand surface characteristics (hydrophilic/hydrophobic) of the materials. It can be said that the heat and mass transfer rate of plastic materials are almost equivalent with those of aluminum.

  • PDF

A Study on the Evaluation of Frost Damage of High-Flowing Concrete using Blast-Furnace Slag (고로슬래그미분말을 사용한 고유동콘크리트의 시공을 위한 내동해성의 평가)

  • 권영진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.157-162
    • /
    • 2001
  • Recently, lots of studies for high flowing concrete have been suggested under practical use that it is only a way to solve the confronted problem. However, most studies have been concentrated on the manufacture method and properties of fresh concrete, but there is few studies for the durability of hardened concrete, specially for the freezing and thawing. Therefore this study is to investigate for the resistance of high-flowing concrete using finely ground granulated furnace blast slag to frost with experimental parameters, such as binder, ratio of replacement of granulated furnace blast slag, superplasticizer, curing method and blain surface area of granulated furnace blast slag.

  • PDF

Effect of porosity on frost resistance of Portland cement pervious concrete

  • Zhang, Wuman;Li, Honghe;Zhang, Yingchen
    • Advances in concrete construction
    • /
    • v.6 no.4
    • /
    • pp.363-373
    • /
    • 2018
  • Portland cement pervious concrete (PCPC) is an effective pavement material to solve or reduce the urban waterlogging problems. The Mechanical properties, the permeability, the abrasion resistance and the frost resistance of PCPC without fine aggregate were investigated. The increase of porosity was achieved by fixing the dosage of coarse aggregate and reducing the amount of cement paste. The results show that the compressive strength and the flexural strength of PCPC decrease with the increase of porosity. The permeability coefficient and the wear loss of PCPC increase with the increase of the porosity. The compressive strength and the flexural strength of PCPC subjected to 25 freeze-thaw cycles are reduced by 13.7%-17.8% and 10.6%-18.3%, respectively. For PCPC subjected to the same freeze-thaw cycles, the mass loss firstly increases and then decreases with the increase of the porosity. The relative dynamic modulus elasticity decreases with the increase of freeze-thaw cycles. And the lower the PCPC porosity is, the more obvious the dynamic modulus elasticity decreases.

A Study on the Admixture Stabilization of Domestic Coal Ashes as the Fill Material (성토재로서 석탄회의 안정제 혼합 효과에 관한 연구)

  • 박은영;김진만
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.37-50
    • /
    • 1995
  • Recently, the treatment of coal ashes produced from thermal electric power plants have been raised as a serious problem in according to the increasing of electric power demand in Korea. This paper deals with a re -use method of coal ash as a fill material. Two domestic coal ashes are mixed with cement and lime to improve the mechanical properties of coal ash. The mechanical properties such as compressive strength, compressive deformation, permeability and frost heaving property are investigated in according to the change of admixture rate, curing temperature and curing time. In this study, it is found coal ash (fly ash+bottom ash) and fly ash with 2%~3% cement can be used as a fill material, respectively. It is also found the frost heaving properties of coal ash is effectively improved by the mixture of 6%~9% cement.

  • PDF

A Study on the Mechanical Properties of Recycled Aggregate Concrete Mixed Steel Fiber (강섬유 혼입 순환골재 콘크리트의 역학적 특성에 관한 연구)

  • Shin, Yong-Seok;Cho, Cheol-Hee;Kim, Dae-Sung;Kim, Jeong-Sup
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.131-137
    • /
    • 2009
  • The rate of recycling of waste concrete, which represents the majority of construction-related waste, is increasing. However, a general recognition of the inferior qualify of recycled aggregates and their lower grade of compressive strength, bending strength, shear strength, frost resistance and ductility make the application of recycled aggregates to structures insufficient. Therefore, this study conducted material and member experiments by adding steel fiber for the purpose of improving the properties of recycled aggregate concrete. To synthesize the experimental results, it was found that specimens with a 30% steel fiber admixture had levels of compressive strength, tensile strength and frost resistance that were equivalent to or higher than the standard specimen, and that concrete that had a 30% replacement of recycled aggregates with steel fiber was suitable for application to actual structures.

Freezing and Bearing Capacity Characteristics of Road Foundations under Temperature Condition (온도조건에 의한 도로하부 지반의 동결 및 지지력 특성)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Park, Jeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.5-14
    • /
    • 2012
  • In the current design codes for anti-freezing layer, the thickness of anti-freezing layer is calculated by freezing depth against the temperature condition. Therefore, they have a tendency of over-design and uniform thickness without the considerations of thermal stability, bearing capacity and frost susceptibility of materials. So, it is essential for studying the appropriateness and bearing capacity of road foundation materials as well as their seasonal and mechanical properties to take an appropriate and reasonable design of the road structure system. In this paper, the freezing and bearing capacity characteristics of typical road foundation materials were evaluated in the large scale laboratory test. LFWD (light falling weight deflectometer) was used to determine the change of elastic modulus ($E_{LFWD}$) caused by to the frost heave and thaw. Furthermore, the influence of crushed natural aggregate on the freezing of the subgrade soil was studied to verify the function and effectiveness of the anti-freezing layer.

Application of Aggregate Recycled in-situ for Anti-frost Layer and Lean Concrete Base Course (저노현장파쇄 순환골재의 동상방지층 및 빈배합콘크리트기층 정용성평가)

  • Kim Jin-cheol;Shim Jae-won;Cho Kyou-sung
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.10-16
    • /
    • 2005
  • In order to recycle the waste concrete from which the reproductive aggregate should be produced in-situ, the applicability of crushers and recycled aggregates, and the compliance with the specification have been evaluated comprehensively. As a result of them, the properties of recycled aggregate particles were inferior to the natural one because of the adherent mortars on the recycled one, and the mobile impact crusher and the eccentric-mounted cone and jaw were superior to the others for the graded aggregates. In the case of anti-frost layer, the recycled one was easily controlled since the dry densities, contrary to natural one, were not largely changed with the moisture contents. It was found that the lean concrete base course is not influenced by absorption as cement dust grows larger, and the 7-day compressive strengths of lean concrete were higher than 10 MPa regardless of the crushing type.

A Study on the Analysis of Scaling Failure Cause in L-Shoulder Concrete Structure (L형측구 콘크리트 구조물의 표면박리파손 원인분석에 관한 연구)

  • Jeon, Sung Il;Nam, Jeong Hee;Ahn, Sang Hyeok;An, Ji Hwan
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.27-37
    • /
    • 2014
  • PURPOSES : The purpose of this study is to verify the causes of surface scaling at L-shoulder concrete structure. METHODS : From the literature reviews, mechanisms of frost damage were studied and material properties including strength, air void, spacing factor and scaling resistance of L-shoulder concrete structure were analyzed using core specimens taken by real fields. RESULTS : The spacing factor of air void has relatively high correlation of surface conditions : lower spacing factor at good surfacing condition and vice versa. If the compressive strength is high, even thought spacing factor does not reach the threshold value of reasonable durability, the surface scaling resistance shows higher value. Based on these test results, the compressive strength also provide positive effect on the surface scaling resistance. CONCLUSIONS : The main causes of surface scaling of L-shoulder could be summarized as unsuitable aid void amount and poor quality of air void structure. Secondly, although the compressive strength is not the governing factor of durability, but it shows the positive effect on the surface scaling resistance.

Simulations of fiber spinning and film blowing based on a molecular/continuum model for flow-induced crystallization

  • McHugh, Anthony J.;Doufas, A.K.
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • This paper describes the application of our recently developed two-phase model for flow-induced crystallization (FIC) to the simulation of fiber spinning and film blowing. 1-D and 2-D simulations of fiber spinning include the combined effects of (FIC), viscoelasticity, filament cooling, air drag, inertia, surface tension and gravity and the process dynamics are modeled from the spinneret to the take-up roll device (below the freeze point). 1-D model fits and predictions are in very good quantitative agreement with high- and low-speed spinline data for both nylon and PET systems. Necking and the associated extensional softening are also predicted. Consistent with experimental observations, the 2-D model also predicts a skin-core structure at low and intermediate spin speeds, with the stress, chain extension and crystallinity being highest at the surface. Film blowing is simulated using a "quasi-cylindrical" approximation for the momentum equations, and simulations include the combined effects of flow-induced crystallization, viscoelasticity, and bubble cooling. The effects of inflation pressure, melt extrusion temperature and take-up ratio on the bubble shape are predicted to be in agreement with experimental observations, and the location of the frost line is predicted naturally as a consequence of flow-induced crystallization. An important feature of our FIC model is the ability to predict stresses at the freeze point in fiber spinning and the frost line in film blowing, both of which are related to the physical and mechanical properties of the final product.l product.

  • PDF