• Title/Summary/Keyword: Frobenius ring

Search Result 5, Processing Time 0.019 seconds

SOME NEW CHARACTERIZATIONS OF QUASI-FROBENIUS RINGS BY USING PURE-INJECTIVITY

  • Moradzadeh-Dehkordi, Ali
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.371-381
    • /
    • 2020
  • A ring R is called right pure-injective if it is injective with respect to pure exact sequences. According to a well known result of L. Melkersson, every commutative Artinian ring is pure-injective, but the converse is not true, even if R is a commutative Noetherian local ring. In this paper, a series of conditions under which right pure-injective rings are either right Artinian rings or quasi-Frobenius rings are given. Also, some of our results extend previously known results for quasi-Frobenius rings.

CONSTRUCTION FOR SELF-ORTHOGONAL CODES OVER A CERTAIN NON-CHAIN FROBENIUS RING

  • Kim, Boran
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.193-204
    • /
    • 2022
  • We present construction methods for free self-orthogonal (self-dual or Type II) codes over ℤ4[v]/〈v2 + 2v〉 which is one of the finite commutative local non-chain Frobenius rings of order 16. By considering their Gray images on ℤ4, we give a construct method for a code over ℤ4. We have some new and optimal codes over ℤ4 with respect to the minimum Lee weight or minimum Euclidean weight.

A NOTE ON TIGHT CLOSURE AND FROBENIUS MAP

  • Moon, Myung-In
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.13-21
    • /
    • 1997
  • In recent years M. Hochster and C. Huneke introduced the notions of tight closure of an ideal and of the weak F-regularity of a ring of positive prime characteristic. Here 'F' stands for Frobenius. This notion enabled us to play an important role in a commutative ring theory, and other related topics.

  • PDF

MININJECTIVE RINGS AND QUASI FROBENIUS RINGS

  • Min, Kang Joo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.2
    • /
    • pp.9-17
    • /
    • 2001
  • A ring R is called right mininjective if every isomorphsim between simple right ideals is given by left multiplication by an element of R. In this paper we consider that the necessary and sufficient condition for that Trivial extension of R by V, i.e. T(R; V ) is mininjective. We also study the split null extension R and S by V.

  • PDF

CYCLIC CODES OVER THE RING 𝔽p[u, v, w]/〈u2, v2, w2, uv - vu, vw - wv, uw - wu〉

  • Kewat, Pramod Kumar;Kushwaha, Sarika
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.115-137
    • /
    • 2018
  • Let $R_{u{^2},v^2,w^2,p}$ be a finite non chain ring ${\mathbb{F}}_p[u,v,w]{\langle}u^2,\;v^2,\;w^2,\;uv-vu,\;vw-wv,\;uw-wu{\rangle}$, where p is a prime number. This ring is a part of family of Frobenius rings. In this paper, we explore the structures of cyclic codes over the ring $R_{u{^2},v^2,w^2,p}$ of arbitrary length. We obtain a unique set of generators for these codes and also characterize free cyclic codes. We show that Gray images of cyclic codes are 8-quasicyclic binary linear codes of length 8n over ${\mathbb{F}}_p$. We also determine the rank and the Hamming distance for these codes. At last, we have given some examples.