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CONSTRUCTION FOR SELF-ORTHOGONAL CODES OVER

A CERTAIN NON-CHAIN FROBENIUS RING

Boran Kim

Abstract. We present construction methods for free self-orthogonal

(self-dual or Type II) codes over Z4[v]/〈v2 + 2v〉 which is one of the
finite commutative local non-chain Frobenius rings of order 16. By con-

sidering their Gray images on Z4, we give a construct method for a code

over Z4. We have some new and optimal codes over Z4 with respect to
the minimum Lee weight or minimum Euclidean weight.

1. Introduction

Coding theory has been many developments with many related areas such as
combinatorics, quantum information theory, and number theory (for instance
[1,3,4,6,10,11,14,15,18,19,21]). In coding theory, one of the central problems
is finding a code with the best parameter. This leads to the optimality of
minimum weight for a code; we call a linear code optimal if it has the highest
minimal weight of any linear code of that length. Many linear codes over Z4

have critical aspects in coding theory. A certain Gray maps image of a linear
code over Z4 is a non-linear binary code with larger length. Also, the minimum
weight of a non-linear binary code can be found from the minimum Lee weight
of the linear code over Z4; this code over Z4 is the pre-image of the Gray map.
From these reasons, linear codes over Z4 are still studied, and the information
for the codes have been updating [7]; for finding new optimal code over Z4, this
database is used normally. Furthermore, self-orthogonal codes have significance
to research of quantum communications and quantum computations (see [2],
[3]).

A Frobenius ring is one of the most interesting parts in coding theory since
the ring is related to the MacWilliams identity. A generator matrix of a linear
code is useful for researching in this area. Especially, over a finite commutative
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local non-chain Frobenius rings of order 16, the standard generator matrix of
a linear code is introduced in [8]. In that respect, these are our motivations for
looking at new optimal codes over Z4 via codes over the ring Z4[v]/〈v2 + 2v〉;
this ring is one of the finite commutative local non-chain Frobenius rings of
order 16.

In [9], N. Han et al. study α-constacyclic codes over a finite commutative
Frobenius ring Z4[u]/〈u2−1〉. They also obtain new MDR cyclic codes over Z4

via α-constacyclic codes over Z4[u]/〈u2−1〉. In [5], Y. Cao and Y. Cao classify
all cyclic codes of odd length n over Z4[v]/〈v2+2v〉, and give all self-dual cyclic
codes over the ring. In [16], S. Ling and P. Solé study a Gray map, construction
of lattice and invariant for Type II codes over a finite commutative local chain
Frobenius ring F4[u]/〈u2〉. Recently, B. Kim et al. give invariants and Jacobi
forms via linear codes over F4[u]/〈u2〉 [12]. In general, a certain type of code
over Fp[u]/〈um〉 is investigated by M. Shi et al. [20]. The Galois ring GR(22, 2)
is a finite commutative local Frobenius ring of order 16, and B. Kim and Y. Lee
suggest Lee weights for cyclic self-dual codes over an extended ring GR(p2,m),
where p is prime and m ≥ 1 [13].

In this paper, we focus on the ring R := Z4[v]/〈v2 + 2v〉. First, we present
construction methods for free self-orthogonal (self-dual or Type II) codes over
Z4[v]/〈v2+2v〉 which is one of the finite commutative local non-chain Frobenius
rings of order 16 (Theorems 1 and 3). We define the Euclidean weight in R
for preserving the weight by a Gray map from R to Z2

4. By considering their
Gray images on Z4, we construct codes over Z4 (Theorem 4). In Tables 1 and
2, we give some new and optimal codes over Z4 with respect to the minimum
Lee weight or minimum Euclidean weight.

2. Preliminaries

A linear code C of length n over a ring R is an R-submodule of Rn; from now
on, we call a linear code by a code for simplicity. Any element c = (c1, . . . , cn)
in C is called a codeword. The dual code C⊥ of C is {c ∈ Rn : c·ĉ = 0 for all ĉ ∈
C} with respect to the usual inner product. If C ⊆ C⊥ (resp. C = C⊥), then
C is a self-orthogonal (resp. self-dual) code.

For a finite commutative ring R, if the R-module is injective, then R is
Frobenius. A finite commutative local Frobenius non-chain ring of order 16 has
a unique non-principal maximal ideal 〈u, v〉 and the socle Soc(R) of a R-module
is 〈ω〉 = {0, ω} for some elements u, v, ω in R; the Soc(R) is defined as a sum
of its minimal submodules. By the following proposition, we get a generator
matrix for a code over a finite commutative local Frobenius non-chain ring of
order 16.

Proposition 1 ([8, Theorem 4.1]). Let R be a finite commutative local Frobe-
nius non-chain ring of order 16. Any code C over R has the following generator
matrix:
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(1)



Ik0 A1 A2 A3 A4 A5 A6

0 uIk1 B1 B2 B3 B4 B5

0 vIk1
0 0 uIk2 0 0
0 0 0 vIk3 0 C1 C2

0 0 0 0 (u+ v)Ik4
0 0 0 0 0 ωIk5 D


,

where

• Iki is the ki × ki identity matrix,
• Ai consists of any elements in R,
• Bi consists of the elements from the unique maximal ideal of R,
• each column of Ci have elements of only one ideal of order 4,
• the elements of D are from Soc(R).

In (1), if k0 6= 0 and ki = 0 with 1 ≤ i ≤ 5, then a code C is called a free
code over R. Here, the value k0 is called the free rank of the free code C.

The ring R := Z4[v]/〈v2 + 2v〉 is one of the finite commutative local non-
chain Frobenius rings of order 16 (see [8]). The following set {1, 3, 1 + v, 3 +
v, 1 + 2v, 3 + 2v, 1 + 3v, 3 + 3v} is the set of all units in the ring R. By simple
calculation, we get u2 = 1 for any unit u in R. This plays a key role in
constructing for self-orthogonal codes over R.

3. Construction methods for self-orthogonal codes over R

In this section, we present construction methods for finding free self-orthogo-
nal codes over R (Theorems 1 and 3). We recall that a code means a linear
code in this paper. Denote the k × k identity matrix by Ik.

Theorem 1. Let M be a k1×k2-matrix over R with 4 | k1, where ri is an i-th
row vector of M (1 ≤ i ≤ k1). Let (Ik1 | M) be a generator matrix for a free
self-orthogonal (or self-dual) code C of length k1 + k2 over R. Let ui be a unit
in R (1 ≤ i ≤ k1). For a fixed integer ` with 1 ≤ ` ≤ k1, the following matrix

M̃ generates a free self-orthogonal code C̃ of length 2k1 + k2 over R with free
rank k1 + 1:

(2) M̃ :=


u1r1

2Ei,j Ik1
...

uk1rk1
v1 v2 r`


such that

– r` is the `-th row vector of the matrix M for the fixed integer 1 ≤ ` ≤ k1,
– the matrix E` is a k1×k1-matrix, where (`, `)-th component is equal to

1. The other components are all equal to 0 (1 ≤ i, j ≤ k1),
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– the vector v1 (resp. v2) has length k1, where `-th component is equal to
u` (resp. 3u`). The other components are all equal to 1 (resp. 0).

Proof. Let m̃i be an i-th row vector of the matrix M̃ . First, except for m̃`, the
inner product value m̃i · m̃k1+1 = 0 for 1 ≤ i ≤ k1 by the orthogonality of the
code C. We also have that m̃i · m̃j = 0 for all 1 ≤ i, j ≤ k1. Moreover, we have
m̃k1+1 · m̃k1+1 = v1 · v1 + v2 · v2 + r` · r` = 0; in detail, v1 · v1 = 0 since 4 | k1.
Clearly, v2 ·v2 = 1 and r` ·r` = 3. Finally, m̃` ·m̃k1+1 = 2u`+3u`+u`(r` ·r`) = 0

in R. Thus, the matrix M̃ generates a self-orthogonal code C̃ of length 2k1+k2
over R. The code C̃ is a free code since the nonzero components of the vectors
v1 and v2 are units in R. Hence the result is proved. �

We give an example for Theorem 1.

Example 1. Let

M=


0 1 + 2v 3 + 2v 3 + 2v

1 + 2v 1 + 2v 1 + 2v 0
1 + 2v 0 3 + 2v 1 + 2v
3 + 2v 1 + 2v 0 1 + 2v


be a 4× 4-matrix over R. Then the matrix (I4 | M) generates a free self-dual
code of length 8 over R. By Theorem 1, we can construct the following matrix

M̃ =


0 1 + v 3 + 3v 3 + 3v

1 + v 1 + v 1 + v 0
2Ei,j I4 1 + v 0 3 + 3v 1 + v

3 + 3v 1 + v 0 1 + v
v1 v2 0 1 + 2v 3 + 2v 3 + 2v

,

where 2E` =

{
2 if i = j = 1,

0 otherwise,
v1 = (1 + 3v, 1, 1, 1), and v2 = (3 + v, 0, 0, 0);

here, set ` = 1 and ui = 1 + 3v (1 ≤ i ≤ 4) in Theorem 1. Then the matrix M̃
generates a free self-orthogonal code of length 12 over R with free rank 5.

We recall the Euclidean weight wtE (resp. Lee weight wtL) of elements in
Z4 is defined as

wtE(0) = 0, wtE(1) = wtE(3) = 1, and wtE(2) = 4,

(resp. wtL(0) = 0, wtL(1) = wtL(3) = 1, and wtL(2) = 2).

In this paper, we define the Euclidean weight of an element in R as follows.

Definition 2. For an element α = a+bv in R (a, b ∈ Z4), the Euclidean weight
ŵtE(α) of α is

ŵtE(α) = wtE(b) + wtE(a+ b),

where wtE is the Euclidean weight in Z4. The Euclidean weight ŵtE(u) of a
vector u = (u1, . . . ,un) in Rn is equal to

∑n
i=1 ŵtE(ui).
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Similarly, the Lee weight ŵtL(α) of α in R can be defined as ŵtL(α) =
wtL(b) + wtL(a+ b), where wtL is the Lee weight in Z4 (see [4]).

In the next proposition, we introduce a Gray map φ from Rn to Z2n
4 . This

map φ preserves the Lee weight and orthogonality by [4].

Proposition 2. Let φ be a map from Rn to Z2n
4 as follows:

φ :
Rn −→ Z2n

4

(a1 + b1v, . . . , an + bnv) 7−→ (b1, a1 + b1, . . . , bn, an + bn),

where u = (a1 + b1v, . . . , an + bnv) and ai, bi ∈ Z4 for 1 ≤ i ≤ n. This map
is a Gray map which preserves the Euclidean weight and the Lee weight as
wtE(φ(u)) = ŵtE(u) and wtL(φ(u)) = ŵtL(u). Furthermore, the map φ also
preserves orthogonality.

For a self-dual code C over R, the code C is called Type II code if the
Euclidean weight of every codeword is divisible by 8. If not, the code C is
called a Type I code.

In Theorem 3, we present another construction method for (self-orthogonal,
self-dual, or Type II) codes over R via (self-orthogonal, self-dual, or Type II)
codes over Z4.

Theorem 3. Let M be a k1 × k2-matrix over Z4 with an i-th row vector ri
(1 ≤ i ≤ k1). Let G = (Ik1 |M) be a generator matrix for a free (self-orthogonal
or self-dual) code of length k1 + k2 over Z4. Then for every unit ui ∈ R,

Ĝ = (Ik1 | M̂) =

 u1r1

Ik1
...

uk1rk1


generates a free (self-orthogonal, self-dual) code of length k1 + k2 over R for
1 ≤ i ≤ k1. Especially, if G generates a free Type II code over Z4, then
Ĝ generates a free Type II code over R, where ui = 1 + 3v or 3 + v in R
(1 ≤ i ≤ k1).

Proof. Considering the lifting method from Z4 to R, the matrix G generates a
free (self-orthogonal or self-dual) code over R; it means that all the elements

of G have the form a + bv with b = 0. Then the matrix Ĝ generates a free
(self-orthogonal or self-dual) code over R; the orthogonality is preserving since
ui is a unit in R for all 1 ≤ i ≤ k1. We note that u2i = 1 for any unit ui ∈ R
(1 ≤ i ≤ k1) as we mentioned in Section 2. The result follows.
Especially, for an element α and a unit u in R,

ŵtE(α) = ŵtE(uα) if and only if u = 1 + 3v or 3 + v;

we can prove this by simple calculation. Notably, we say that Type II code
also can be obtained in this theorem. �

The construction method in Theorem 3 is simple, but their Gray images give
very meaningful database for linear codes over Z4 (see Section 4).
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Remark 1. We use the same notation as Theorem 3. Let M̃ be a matrix
such that ui = 1 for all i in M̂ ; it means that the matrix M is regarded as
matrix over R, namely M̃ . By considering the Gray map φ for M̂ and M̃ , we
have two Z4 codes Cφ(Ĝ) and Cφ(G̃) generated by the matrices φ(Ĝ) = (Ik1 |
φ(M̂)) and φ(G̃) = (Ik1 | φ(M̃)), respectively. In Proposition 3, we compare
the minimum weights for the codes Cφ(Ĝ) and Cφ(G̃) with respect to Lee and

Euclidean weights. Taking a similar point of view, in Proposition 3, we focus
on the codes CĜ and CG̃ over R which are generated by the matrices Ĝ and
G, respectively.

Proposition 3. We use the same notation as Theorem 3 and Remark 1.
(i) Let Cφ(Ĝ) (resp. Cφ(G̃)) be a code over Z4 generated by the matrix φ(Ĝ)

(resp. φ(G̃)). Then

wtE(Cφ(Ĝ)) ≥ wtE(Cφ(G̃)) and wtL(Cφ(Ĝ)) ≥ wtL(Cφ(G̃)).

(ii) Let CĜ (resp. CG̃) be a code over R generated by the matrix Ĝ (resp. G̃).
Then

ŵtE(CĜ) ≥ ŵtE(CG̃) and ŵtL(CĜ) ≥ ŵtL(CG̃).

Proof. Let α = a+ bv be an element in R, where a, b ∈ Z4. Set b = 0 since all
the elements of M̃ have the form a + bv with b = 0. Then, for a unit u in R,
we get that wtE(φ(uα)) ≥ wtE(φ(α)) by considering the Gray map φ; for any
unit in {1, 3, 1 + v, 3 + v, 1 + 2v, 3 + 2v, 1 + 3v, 3 + 3v} and arbitrary element
α, we can check that the inequality is true through simple calculations. Hence,
(i) is proved. Moreover, wtE(Cφ(Ĝ)) = ŵtE(CĜ) and wtE(Cφ(G̃)) = ŵtE(CG̃)

since the Gray map φ preserves the Euclidean weight. For the Lee weight, we
can prove it similarly. Thus (ii) follows. �

We close this section with some examples for Theorem 3 and Proposition 3.

Example 2. Let (I4 | M) be a 4 × 8-matrix which generates a free self-dual
code C of length 8 over Z4, where

M =


0 1 3 3
1 1 1 0
3 0 1 3
1 3 0 3

;

the minimum Lee weight of C is 4 and the minimum Euclidean weight of C is
4.

(i) Set ui = 1 + 3v (1 ≤ i ≤ 4) in Theorem 3. Then (I4 | (1 + 3v)M)
generates a free self-dual code of length 8 over R with the minimum Lee weight
4 and the minimum Euclidean weight 4.

(ii) Set u1 = u2 = 1 + 2v and u3 = u4 = 3 + 2v in Theorem 3. Then the
matrix
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0 1 + 2v 3 + 2v 3 + 2v

1 + 2v 1 + 2v 1 + 2v 0
I4 1 + 2v 0 3 + 2v 1 + 2v

3 + 2v 1 + 2v 0 1 + 2v


generates a free self-dual code of length 8 over R with the minimum Lee weight
6 and the minimum Euclidean weight 8.

By (i) and (ii), Proposition 3 can be checked.

Example 3. (i) Let

M =


0 3 3 3 2
3 0 1 3 2

I4 1 1 0 3 2
2 2 1 3 1


be a 4 × 9-matrix which generates a free code C of length 9 over Z4 with the
minimum Lee weight 6 and the minimum Euclidean weight 6. By Theorem 3,
we obtain the following matrix

M̂ := (I4|Ms) :=


0 3 + 3v 3 + 3v 3 + 3v 2 + 2v

3 + 3v 0 1 + v 3 + 3v 2 + 2v
I4 1 + v 1 + v 0 3 + 3v 2 + 2v

2 + 2v 2 + 2v 1 + v 3 + 3v 1 + v

 .

The matrix M̂ generates a free code of length 9 over R with the minimum Lee
weight 8 and the minimum Euclidean weight 12; we consider the Gray map’s
image φ(Ms) of Ms

(3) φ(Ms) =


0 0 3 2 3 2 3 2 2 0
3 2 0 0 1 2 3 2 2 0
1 2 1 2 0 0 3 2 2 0
2 0 2 0 1 2 3 2 1 2

 .

Then the matrix (I4|φ(Ms)) gives a linear code of length 14 over Z4 with the
minimum Lee weight 8 and the minimum Euclidean weight 12.

(ii) Now, we will find a new code over Z4 by using our construction method
in Theorem 3. Set the matrix Ms as

(4)


0 0 2 3 2 1 2 1
2 3 2 3 2 3 0 0
2 3 0 0 2 1 2 3
2 1 2 3 0 0 2 3

 =


r1
r2
r3
r4


over Z4 (the matrix (I4 |Ms) gives a self-orthogonal code of length 12 over Z4

with the minimum Lee weight 6). By using the Gray map φ, we obtain the

following matrix M̂s

(5) φ


(1 + v)r1
(3 + v)r2
(3 + 3v)r3
(1 + v)r4

 =


0 0 0 0 2 0 3 2 2 0 1 2 2 0 1 2
2 0 3 0 2 0 3 0 2 0 3 0 0 0 0 0
2 0 1 2 0 0 0 0 2 0 3 2 2 0 1 2
2 0 1 2 2 0 3 2 0 0 0 0 2 0 3 2

 .
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The matrix (I4 | M̂s) generates a self-orthogonal code of length 20 over Z4

with the minimum Lee weight 8; it is one of the meaningful results because this
is a new code over Z4 by [7].

4. New optimal codes over Z4 from codes over R

In this section, we give a method for finding codes over Z4 by using codes
over R and the Gray map φ. From this method, we can find many new optimal
codes over Z4. We recall that a code is optimal if it has the highest minimal
weight of any linear code of that length. In contrast, a code to be extremal if
it meets the applicable bounds. It means that if a code is extremal, then it is
optimal; the reverse is not true (see [17]).

The following theorem is a construction method for codes over Z4 via Gray
map’s images of codes over R.

Theorem 4. Let (Ik | M̃i) be a generator matrix for a free code of length
k + m̈i over R constructed by Theorems 1 or 3 with 1 ≤ i ≤ n1. Let (Ik |Mj)
be a generator matrix for an arbitrary free code of length k +mj over Z4 with
1 ≤ j ≤ n2. We consider the following matrix over Z4:

M̂ := (Ik | φ(M̃1) | · · · | φ(M̃n1
) |M1 | · · · |Mn2

).

Then the matrix M̂ generates a free code of length k + 2
∑n1

i=1 m̈i +
∑n2

j=1mj

over Z4 with free rank k.

Table 1. New free (optimal) codes over Z4 with free rank 4

length generator min. min. L E
matrix Lee Euclidean -opt -opt

weight weight
66 (D58 |M8) 46∗ 73∗ © ©
68 (D60 |M8) 50∗ 65∗ © ©
70 (D62 |M8) 50∗ 78∗ © ©
70 (D60 |M10) 50∗ 67∗ © ×
72 (D64 |M8) 50∗ 73∗ © ×
72 (D62 |M10) 50∗ 74∗ © ©
74 (D58 |M8 |M8) 48∗ 78∗ × ©
74 (D64 |M10) 50∗ 75∗ © ×
76 (D60 |M8 |M8) 52∗ 78∗ © ×
76 (D58 |M8 |M10) 48∗ 88∗ × ©
78 (D62 |M8 |M8) 52∗ 88∗ © ©
78 (D60 |M8 |M10) 52∗ 80∗ © ×
80 (D64 |M8 |M8) 52∗ 86∗ © ×
80 (D62 |M8 |M10) 52∗ 88∗ © ©
82 (D74 |M8) 52∗ 70∗ © ×
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82 (D64 |M8 |M10) 52∗ 88∗ © ©
86 (D78 |M8) 52 86∗ × ©
86 (D76 |M10) 54∗ 78∗ © ×
88 (D78 |M10) 52∗ 86∗ × ©
92 (D82 |M10) 58∗ 86∗ © ©
92 (D74 | D8 |M10) 56 84∗ © ×
94 (D76 | D8 |M10) 60∗ 92∗ © ©
96 (D80 |M16) 56∗ 85∗ × ×
96 (D78 | D8 |M10) 56∗ 100∗ × ©
98 (D82 |M16) 59∗ 87∗ × ×
98 (D88 |M10) 60 94∗ © ©
98 (D80 |M8 |M10) 60 92 © ×
100 (D84 |M16) 59∗ 86∗ × ×
100 (D82 |M8 |M10) 64∗ 100∗ © ©
102 (D84 |M8 |M10) 64∗ 92∗ © ©
104 (D86 |M8 |M10) 68∗ 100∗ © ©
106 (D88 |M8 |M10) 64 108∗ © ©

It is possible to get many free new and optimal codes by using Theorem 4;
our results are compared with database in [7]. In Table 1, we let M8 (resp. M10,
M16) be a matrix which is obtained in (4) (resp. (3), (5)). In Table 2, the matrix
M10,3 is a 3× 10-matrix over Z4 obtained by Theorem 3;

M10,3 = φ

 0 3 + 2v 3 + 2v 3 + 2v 2
2 + 3v 0 2 + v 2 + 3v 2v
1 + 2v 1 + 2v 0 3 + 2v 2


=

 0 0 2 1 2 1 2 1 0 2
3 1 0 0 1 3 3 1 2 2
2 3 2 3 0 0 2 1 0 2

 .

Let Dn be a generator matrix of a linear code of length n over Z4 given in
[7]. The L-opt (resp. E-opt) means that a code is an optimal code with respect
to the minimum Lee weight (resp. Euclidean weight). The ∗-marked weight
presents that the weight is new in each case.

Table 2. New free (optimal) codes over Z4 with free rank 3

length generator min. min. L E
matrix Lee Euclidean -opt -opt

weight weight
69 (D59 |M10,3) 54∗ 76∗ © ©
71 (D61 |M10,3) 58∗ 84∗ © ©
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73 (D63 |M10,3) 60∗ 84∗ © ©
75 (D65 |M10,3) 50 66∗ © ©
77 (D67 |M10,3) 50 72∗ © ©
79 (D69 |M10,3) 54∗ 70∗ © ©
81 (D71 |M10,3) 52 73∗ × ©
83 (D73 |M10,3) 54∗ 76∗ © ©
85 (D75 |M10,3) 58∗ 74∗ © ©
87 (D77 |M10,3) 56∗ 77∗ × ©
89 (D79 |M10,3) 58∗ 80∗ © ©
91 (D81 |M10,3) 62∗ 78∗ © ©
93 (D83 |M10,3) 60∗ 81∗ × ©
95 (D85 |M10,3) 62∗ 84∗ © ©
97 (D87 |M10,3) 66∗ 82∗ © ©
99 (D89 |M10,3) 64∗ 85∗ × ©
101 (D91 |M10,3) 66∗ 88∗ © ©
103 (D93 |M10,3) 70∗ 86∗ © ©
105 (D95 |M10,3) 70∗ 86∗ © ©
107 (D97 |M10,3) 70∗ 92∗ © ©
109 (D99 |M10,3) 74∗ 90∗ © ©
111 (D101 |M10,3) 72∗ 93∗ × ©
113 (D103 |M10,3) 74 96∗ © ©
115 (D105 |M10,3) 78∗ 94∗ © ©
117 (D107 |M10,3) 76∗ 97∗ × ©
119 (D109 |M10,3) 78∗ 100∗ © ©
121 (D111 |M10,3) 82∗ 98∗ © ©
123 (D113 |M10,3) 80∗ 101∗ × ©

Remark 2. Let D62 be a generator matrix for a linear code C over Z4 of
length 62 and free rank 4 with the minimum Lee weight 38; the code C is not
an optimal code. By using Theorem 4 and the matrix M10, we consider the
matrix (D62 | M10) over Z4; this matrix generates a linear code Ĉ over Z4 of
length 72, where the free rank is 4 and the minimum Lee weight is 44. This
code Ĉ is an optimal code over Z4 by [7]. This means that even though a code

C is not optimal over Z4, a code Ĉ generated by the code C can be an optimal
code over Z4 by using Theorem 4.

5. Conclusion

In this paper, we present new construction methods for self-orthogonal, self-
dual, or Type II codes over R = Z4[v]/〈v2 + 2v〉. We find new optimal codes
over Z4 by using the Gray map’s images of the codes suggested by our methods
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over R. Except for the codes given in this paper, we can construct more new
optimal codes over Z4. This is significant in this area since linear codes over Z4

can give many applications such as non-linear binary codes with many quantum
codes. Later, our results for self-dual codes or Type II codes also can be used
in number theory for finding invariants, new modular forms or Jacobi forms
over certain number fields.
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