A NOTE ON TIGHT CLOSURE AND FROBENIUS MAP

  • Moon, Myung-In (Global Analysis Research Center Seoul National University )
  • Published : 1997.02.01

Abstract

In recent years M. Hochster and C. Huneke introduced the notions of tight closure of an ideal and of the weak F-regularity of a ring of positive prime characteristic. Here 'F' stands for Frobenius. This notion enabled us to play an important role in a commutative ring theory, and other related topics.

Keywords

References

  1. Bulletin K.M.S. v.28 no.2 Weak F-regularity of a Cohen-Macaulay local ring Cho, Y.;M. I. Moon
  2. Trans. Am. Math. Soc. v.278 F-purity and Rational singularity Fedder, R.
  3. Trans. Am. Math. Soc. v.301 F-purity and Rational singularity in Graded complete intersection rings Fedder, R.
  4. Proceedings of the program in commutative algebra at MSRI A characterization of F-regularity in terms of F-purity Fedder, R.;K. i. Watanabe
  5. J. Am. Math. Soc. v.3 Tight closure, invarint theory, and the Briancon-Skoda Theorem Hochster, M.;C. Huneke
  6. Trans. Am. Math. Soc. v.231 Cyclic purity versus purity in excellent Notherian rings Hochster, M.
  7. Adv. in Math. v.21 The purity of the Frobenius and local cohomology Hochster, M.;J. L. Roberts
  8. 1-Dimensional Cohen-Macaulay Rings v.327 Matlis, E.
  9. I.H.E.S. Publ. Math. v.42 Dimension projective finie et cohomologie locale Peskine, C.;L. Szpiro