A NOTE ON TIGHT CLOSURE AND FROBENIUS MAP

MYUNG IN MOON

In recent years M.Hochster and C.Huneke introduced the notions of tight closure of an ideal and of the weak F-regularity of a ring of positive prime characteristic. Here 'F' stands for Frobenius. This notion enabled us to play an important role in a commutative ring theory, and other related topics.

In this paper we study the connections between the Frobenius map and the tight closure.

A weakly F-regular ring is easily seen to be F-pure, but we do not know the converse is true or not in general. We study conditions for an F-pure ring to be weakly F-regular. And as a corollary we give a proof of R. Fedder's conjecture in one dimensional case as follows: "R/xR is F-pur" implies "R is F-pur" whenever R is Cohen-Macaulay ring of dimension one. Finally we study the conditions related to the tight closure that the Cohen-Macaulay ring to be weakly F-regular and Gorenstein.

1. Preliminaries

All rings are commutative, Noetherian with identity of prime characteristic p. And all modules are finitely generated, unless otherwise specified.

DEFINITION 1.1. [Hochster-Huneke] Let $I \subseteq R$ be an ideal and R^o denote the complement of the union of the minimal primes of R and

Received November 23, 1994. Revised December 10, 1996.

¹⁹⁹¹ AMS Subject Classification: 13B02, 13B22, 13H10.

Key words: F-pure, tight closure, weakly F-regular.

Research partially supported by TGRC-KOSEF(TGRC Post Doc.Program)in 1993.

let $I^{[q]}$ denote the ideal $(i^q:i\in I)$. We say that $x\in I^*$, the *tight* closure of I, if there exists $c\in R^o$ such that $cx^q\in I^{[q]}$ for all $q\gg 0$, i.e., for all sufficiently large q of the form p^e . If $I=I^*$, we say that I is tightly closed.

DEFINITION 1.2. [Hochster-Huneke] A Noetherian ring is called weakly F-regular if every ideal is tightly closed. If every localization of R at a multiplicative subset is weakly F-regular, then we say that R is F-regular.

DEFINITION 1.3. [Fedder-Watanabe] A Noetherian local ring of characteristic p is called F-rational if every ideal generated by a system of parameter is tightly closed.

Now we introduce the notion of F-purity, relying on the special properties of the Frobenius homomorphism. And we discuss the relationship between the F-purity and the weak F-regularity. Let R be a ring of characteristic p. Denote by eR , the ring R viewed as an R-module via the e-th power of the Frobenius map $F(r) = r^q$, where $q = p^e$. Furthermore, for any R-module M, ${}^eM = M \otimes_R {}^eR$ will denote the group M viewed as an R-module via $r \cdot m = r^q m$. $R \xrightarrow{F^e} {}^eR$ is therefore an R-module homomorphism [9].

DEFINITION 1.4. [Hochster-Roberts] A Noetherian ring R of characteristic p is called F-pure if for every R-module M,

$$0 \to M \otimes_R R \to M \otimes_R^{-1} R$$

is exact. Equivalently, for some e > 0, $0 \to M \to M \otimes_R {}^eR$ is exact.

DEFINITION 1.5. [Fedder] We say that a local ring R is F-contracted if $R \to {}^1R$ is contracted, which means that every ideal I which is generated by a system of parameter for R satisfies

$$(I \cdot {}^{1}R) \cap R = I.$$

Lemma 1.6. For an F-pure or an F-contracted ring R, the Frobenius map must be injective. Whence R is reduced.

Proof. If R is F-pure, then the Frobenius map by tensoring with R is also injective from the definition.

If R is F-contracted, and if F(r) = 0, then certainly $F(r) \in I \cdot {}^{1}R$ for every ideal I which is generated by a system of parameter for R. The contractedness hypothesis then guarantees that r lies in the intersection of all ideals of R which are generated by a system of parameter But this intersection is well known to be 0. Thus, r = 0 and the Frobenius map is injective.

When R is reduced, there is a natural identification of maps:

- $(1) R \stackrel{\mathbf{F}}{\longrightarrow} {}^{1}R.$
- (2) $R \longrightarrow R^{1/p}$ where $R^{1/p}$ denotes the ring of the p-th roots of elements in R.
- (3) $R^p \to R$, where R^p denotes the ring of the p-th powers of elements in R.

Thus, if $I=(a_1,\cdots,a_t)$ is an ideal in R, then 1I can be thought of as the ideal $(a_1^{1/p},\cdots,a_t^{1/p})\subset R^{1/p}$ under the second identification of maps.

DEFINITION 1.7. [Hochster] The map $R \xrightarrow{\phi} S$ is called *cyclically pure* if for every ideal $I \subset R$, $\{x \in R \mid \phi(x) \in IS \} = I$.

Note that the fact that ϕ must be injective follows from the case when I=0. Let $S={}^1R$ and ϕ be the Frobenius map. Then, since $I\cdot{}^1R={}^1(I^{[p]}R)$, it follows that $R\to{}^1R$ is cyclically F-pure if and only if $f^p\in I^{[p]}$ implies $f\in I$. Clearly if $R\to{}^1R$ is F-pure, then this map is cyclically F-pure. But the converse is true only when R is approximately Gorenstein [6].

2. Weak F-regularity and F-purity

Proposition 2.1. A weakly F-regular ring R is F-pure.

Proof. In fact, the weak F-regularity always implies that the map $R \to {}^1R$ is cyclically pure because $f^p \in I^{[p]}$ implies $1 \cdot f^q \in I^{[q]}$ for every $q = p^e$. Whence, $f \in I^* = I$. But if R is approximately Gorenstein, then $R \to S$ is cyclically pure if and only if it is pure. Since weakly F-regular rings are normal, and so approximately Gorenstein. It follows that R is F-pure.

But the converse of Proposition 2.1., that is, the F-purity implies the weak F-regularity, remains open. However, for the zero dimensional case, we have an affirmative answer.

Theorem 2.2. A zero dimensional F-pure ring R is weakly F-regular.

Proof. We may assume that R is local with the maximal ideal \underline{m} . Let I be an ideal of R and let $x \in I^*$. Then there exists $c \in R^o$ such that $cx^q \in I^{[q]}$ for all $q = p^e$ because an F-pure ring is reduced. But $\bigcup \{P : P \text{ is a minimal prime ideal of } R\} = \underline{m}$, and $R^o = R - \underline{m}$ is the units of R, we have $x^q \in I^{[q]}$. Thus $x \in I$ by F-purity. Hence $I = I^*$ and R is weakly F-regular.

Now we can prove an one dimensional case of an important conjecture, which is raised by R. Fedder in his paper [2], by using Theorem 2.2.

Fedder's Conjecture : "R/fR is F-pure" should imply "R is F-pure", whenever R is Cohen-Macaulay ring and $f \notin Z(R)$.

COROLLARY 2.3. Let R be a one dimensional ring, and let $f \notin Z(R)$. If R/fR is F-pure, then R is F-pure.

Proof. Since R/fR is a zero dimensional F-pure ring, R/fR is weakly F-regular by Theorem 2.2. Since $\dim R = 1$, R is also weakly F-regular[1]. Thus R is F-pure.

Now we prove that an F-pure ring is weakly F-regular for the higher dimensional case under additional conditions.

DEFINITION 2.4. Let R be a Noetherian reduced ring of characteristic p, and let M be an R-module. We say that M is F-unstable if for every nonzero $x \in M$,

$$\bigcap_{\epsilon>0} \operatorname{Ann}_R(F^{\epsilon}(x)) = (0),$$

where $F^{e}(x)$ denotes the image of $x = x \otimes 1$ in $F^{e}(M) = M \otimes_{R} {}^{e}R$.

LEMMA 2.5. For every ideal I of a domain R, $I = I^*$ if and only if R/I is F-unstable as an R-module.

Proof. Assume that R/I is F-unstable and I is not tightly closed. Let $y \in I^* - I$. Then there exists $c \neq 0 \in R$ such that $cy^q \in I^{[q]}$ for all $q = p^e$. Let x be the image of y in R/I. Then $F^e(x) \in F^e(R/I) = R/I^{[q]}$, and $cF^e(x) = 0$ in $F^e(R/I)$ for every e > 0. Thus $0 \neq c \in \bigcap_{e \geq 0} \operatorname{Ann}_R(F^e(x))$, a contradiction.

Conversely, assume R/I is not F-unstable. Then there exist a nonzero $x \in R/I$ and nonzero $c \in \operatorname{Ann}_R(F^e(x))$ for every e > 0. Thus $cy^q \in I^{[q]}$ for every $q = p^e$, where y is the representative of x in R. Hence $y \in I^*$, but $y \notin I$. That is, I is not tightly closed.

Theorem 2.6. Let R be a complete F-pure domain. Then the followings are equivalent:

- (1) Every ideal of R is tightly closed.
- (2) Every finite R-module is F-unstable.
- (3) If R is a local ring with the unique maximal ideal \underline{m} , then $E_R(R/\underline{m})$, the injective hull of R/\underline{m} , is F-unstable.

Proof. (1) implies (2); We will prove by induction on the number n of generators of M.

(i) n=1; M is a cyclic R-module, let $M=Rx, x\in M$. Then M is isomorphic to R/I, where $I=\mathrm{Ann}_R(x)$. Since I is tightly closed by the weak F-regularity of R, M is F-unstable by Lemma 2.5.

(ii) n > 1; Let $M_1 = \sum_{i=1}^{k-1} Rx_i$, $M = \sum_{i=1}^{k} Rx_i$, and $M_2 = M/M_1$, where $x_i \in M$ for every $i = 1, \dots, k$. Then the induction hypothesis implies that M_1 and M_2 are F-unstable. From the following commutative diagram follows that M is F-unstable.

(2) implies (3); we can write $E = E_R(R/\underline{m})$ as a direct limit of finite R-modules. That is, $E = \varinjlim M_i$, where M_i are finite R-modules. Here, each M_i is F-unstable by the hypothesis. Then,

$$E \otimes_R {}^e R = (\varinjlim M_i) \otimes_R {}^e R = \varinjlim (M_i \otimes_R {}^e R).$$

The second equality follows from the fact that the tensoring, $\otimes_R {}^e R$, commutes with the direct limit. Thus (3) is also true.

(3) implies (1); Assume that $I^* \supseteq_{\neq} I$ for any ideal I of R.

Then
$$(0:_E I^*) \subset (0:_E I) = \{r \in E \mid rI = 0\}, \text{ and } I^* \cdot (0:_E I) \neq 0.$$

For, if $(0:_E I^*) = (0:_E I)$, then $\operatorname{Ann}_R((0:_E I^*)) = \operatorname{Ann}_R((0:_E I))$. But $\operatorname{Ann}_R((0:_E J)) = J$ for any ideal J of R [8]. This implies that $I = I^*$, which is a contradiction.

We can therefore choose $y \in I^*$ and $x \in (0:_E I)$ such that z = yx is a nonzero element of E. Since $y \in I^*$, there exists $c \neq 0 \in R$ such that $cy^q \in I^{[q]}$ for all $q = p^e$. Since $x \in (0:_E I)$, $F^e(x) \in (0:_E I^{[q]})$. Thus, $0 = (cy^q)F^e(x) = cF^e(yx) = cF^e(z)$ for every e > 0. That is, $c \in \bigcap_{e>0} (0:_R F^e(z)) = \bigcap_{e>0} \operatorname{Ann}_R(F^e(z))$. Since $c \neq 0$, E is not F-unstable, which is a contradiction.

3. The Frobenius Map and the Weak F-regularity

Recall that a ring R of characteristic p is F-contracted if every ideal generated by a system of parameter is contracted with respect to the Frobenius map $F: R \to {}^1R$, that is, $(I \cdot {}^1R) \cap R = I$.

PROPOSITION 3.1. Let (R, \underline{m}) be a Cohen-Macaulay local ring with the maximal ideal \underline{m} . Then the followings are equivalent:

- (1) The map from $H_{\underline{m}}^n(R)$ to $H_{\underline{m}}^n({}^1R)$, induced by the Frobenius map from R to 1R , is injective.
- (2) R is F-contracted.
- (3) There exists a system of parameter which is contracted with respect to the Frobenius map from R to 1R .

Proof. See [3, Proposition 1.4].

For a Gorenstein local ring R of dimension n, it is a well-known fact from local duality theory that $\mathrm{H}^n_{\underline{m}}(R)$ is isomorphic to E, the injective hull of R/\underline{m} , where \underline{m} is the unique maximal ideal of R. Hochster and Roberts proved that R is F-pure if and only if $E \to E \otimes^1 R$ is injective [7]. Hence we have the following:

PROPOSITION 3.2. Let R be a local Gorenstein ring with the maximal ideal m. Then the followings are equivalent:

- (1) R is F-pure.
- (2) R is F-contracted.
- (3) There exists asystem of parameter which is contracted with respect to the Frobenius map.
- (4) $H_m^n(R) \to H_m^n({}^1R)$ is injective, where dimR = n.

Proof. (2), (3), and (4) are equivalent by Proposition 3.1. And the implication of (1) to (2) is clear. Now it remains only to prove that (4) implies (1). But $H_{\underline{m}}^n(R) \cong E$, the injective hull of R/\underline{m} , implies that $E \to E \otimes^1 R$ is injective. Thus, R is F-pure.

Now we discuss the relationship between the F-contractedness and the weak F-regularity, and characterize the Gorenstein ring of dimension zero.

PROPOSITION 3.3. Let R be a local Gorenstein ring and let x_1, \dots, x_d be a system of parameter If the image of I in R/I is contracted with respect to the Frobenius map

$$F: R/I \to {}^1(R/I),$$

where $I = (x_1, \dots, x_d)R$, then R is weakly F-regular.

Proof. R/I is a zero-dimensional Gorenstein F-pure ring by the hypothesis and Proposition 3.2. Thus R/I is weakly F-regular by Theorem 2. Since x_1, \dots, x_d is a regular sequence in R, R is also Gorenstein. Thus R is weakly F-regular.

In Proposition 3.3, the condition that R is Gorenstein can be replaced by the condition that R is Cohen-Macaulay.

LEMMA 3.4. Let R be a reduced ring of dimension zero. Then R is Gorenstein, and weakly F-regular.

Proof. We may assume that R is local. Since R is a direct product of finite number of fields, R is normal. But we know that any normal local ring is approximately Gorenstein. Since R is zero-dimensional local, R is Gorenstein. Now we need only to show that R is weakly F-regular. It is enough to show that (0), a system of parameterideal of R, is tightly closed. Let $r \in (0)^*$. Then there exists $c \in R^o$ such that $cr^q = 0$ for all $q = p^e$. But $R^o = R \setminus Z(R)$, since R is Noetherian reduced. We have $r^q = 0$ and r = 0. Thus, $(0) = (0)^*$, as required. \square

THEOREM 3.5. Let R be a Cohen-Macaulay local ring of dimension d and let I be an ideal of R which is generated by a system of parameter If R/I is reduced, then R is Gorenstein and R is F-regular.

Proof. Since R/I is zero-dimensional and reduced, R/I is Gorenstein and (weakly) F-regular by Lemma 3.4. And since a system of parameter for R is a regular sequence in R, R is also Gorenstein. We know that if x_1, \dots, x_d form a regular sequence in a Gorenstein local ring and $R/(x_1, \dots, x_d)R$ is weakly F-regular, then R is weakly F-regular [1].

Now we prove that Proposition 3.3. is still true when R is Cohen-Macaulay.

PROPOSITION 3.6. Let R be a Cohen-Macaulay local ring of dimension d, and let x_1, \dots, x_d be a system of parameter If the image of $I = (x_1, \dots, x_d)R$ in R/I is contracted with respect to the Frobenius map

$$F: R/I \to {}^1(R/I),$$

then R is weakly F-regular and Gorenstein.

Proof. The condition that the image of $I=(x_1,\cdots,x_d)R$ in R/I is contracted with respect to the Frobenius map implies that R/I is F-contracted, and R/I is reduced. Thus R is Gorenstein and F-regular by Theorem 3.5.

COROLLARY 3.7. Let R be a Cohen-Macaulay local ring of dimension d. If R/I is F-pure and I is an ideal generated by an s.o.p., then R is F-regular.

References

- Cho, Y. and M. I. Moon, Weak F-regularity of a Cohen-Macaulay local ring, Bulletin K.M.S. 28(2) (1991), 175-180.
- 2. Fedder, R., F-purity and Rational singularity, Trans. Am. Math. Soc. 278 (1983), 461-480.
- 3. Fedder, R., F-purity and Rational singularity in Graded complete intersection rings, Trans. Am. Math. Soc. 301 (1987), 47-62.
- 4. Fedder, R. and K. i. Watanabe, A characterization of F-regularity in terms of F-purity, Proceedings of the program in commutative algebra at MSRI, Publ.15, Springer-Verlag, 1989, pp. 227-245.
- 5. Hochster, M. and C. Huneke, Tight closure, invarint theory, and the Briançon-Skoda Theorem, J. Am. Math. Soc. 3 (1990), 31-116.
- Hochster, M., Cyclic purity versus purity in excellent Notherian rings, Trans. Am. Math. Soc. 231 (1977), 463-488.
- Hochster, M. and J. L. Roberts, The purity of the Frobenius and local cohomology, Adv. in Math. 21 (1976), 117-172.
- Matlis, E., 1-Dimensional Cohen-Macaulay Rings, Springer Lecture Notes in Math. 327, 1973.
- Peskine, C. and L. Szpiro, Dimension projective finie et cohomologie locale, I.H.E.S. Publ. Math. 42 (1973), 323-395.

Global Analysis Research Center Seoul National University Seoul 151-742, Korea