• Title/Summary/Keyword: Fringe shifting Method

Search Result 44, Processing Time 0.019 seconds

Measurement of Principal Stress Direction by Photoelastic Phase Shifting Method (광탄성 위상이동법을 이용한 주응력 방향 측정법)

  • 김명수;김환;백태현
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1982-1989
    • /
    • 2004
  • In photoelasticity, the directions of principal stresses are given by isoclinic fringe patterns. In this study, photoelastic theory is represented by Jones calculus and the photoelastic 8-step phase shifting method is described. A feasibility study using computer simulation is done to get isoclinics from photoelastic fringes of a circular disk under diametral compression. Fringe patterns of the disk are generated from the stress-optic law. The magnitudes of isoclinics obtained from the fringe patterns of computer simulation and experiment are compared with those of theory. The results are close between them. Then, the 8-step phase shifting method is applied to get distributions of isoclinics along the specified lines of a cuved beam plate under tensile load. Experimental results obtained from the phase shifting method were compared with those of finite element analysis (ANSYS). It is confirmed that measurement of isoclinic distributions is possible by use of photoelasitc phase shifting method.

Measurement of Isochromatic Fringe Distribution of a TV Glass Panel by Use of Photoelastic 4-step Phase Shifting Method (광탄성 4단계 위상이동법을 이용한 TV유리패널의 등색프린지 분포측정)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Cho, Seong-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • This paper presents the experimental results measured by photoelastic 4-step phase shifting method for the isochromatic fringe distribution in a TV glass panel. In the conventional photoelastic method, the isochromatic fringe orders are measured manually point by point. The 4-step phase shifting method uses four images obtained from a circular polariscope by rotating the analyzer to $0^{\circ},\;45^{\circ},\;90^{\circ}$, and $135^{\circ}$. In order to use the 4-step phase shifting method, the elements of a polariscope should be aligned to isoclinic direction at a point and/or along a line where isochromatic fringe distribution is measured. Experimental results obtained from the 4-step phase shifting method are compared with those measured by the Senarmont compensation method. Both results are well agreed. Then, isochromatic fringe distributions in the TV glass panel that is heat-treated before and after are compared. Maximum and minimum isochromatic fringe orders in the TV glass panel with before- and after-heat treatment are changed approximately two times.

East 3-Dimensional Shape Reconstruction Using Phase-Shifting Grating Projection Moire Method (위상천이 영사식 모아레법을 이용한 고속 3차원 형상복원)

  • 최이배;구본기;정연구
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.11a
    • /
    • pp.111-115
    • /
    • 1998
  • A phase-shifting projection moire method particularly intended for high-speed three-dimensional shape reconstruction of diffuse objects is presented. Emphasis is on realization of phase-shifting fringe analysis in projection moire topography using a set of line grating pairs designed to provide different phase shifts in sequence. Further a time-integral fringe capturing scheme is devised to remove undesirable high frequency original grating patterns in real-time without time-consuming software image processing. Finally the performances of the proposed method are discussed with measurement results.

  • PDF

Stress Analysis of a Curved Beam Plate by using Photoelastic Fringe Phase Shifing Technique (광탄성 프린지 위상 이동법을 이용한 곡선보평판의 응력 해석)

  • Baek, Tae-Hyeon;Kim, Myeong-Su;Kim, Su-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2313-2318
    • /
    • 2000
  • The method of photoelasticity allows one to obtain principal stress differences and principal stress directions in a photoelastic model. In the classical approach, the photoelastic parameters are measured manually point by point. This is time consuming and requires skill in the identification and measurement of photoelastic data. Fringe phase shifting method has been recently developed and widely used to measure and analyze fringe data in photo-mechanics. This paper presents the test results of photoelastic fringe phase shifting method for the stress analysis of a curved beam plate. The technique used here requires four phase stepped photoelastic images obtained from a circular polariscope by rotating the analyzer at 0˚, 45˚, 90˚ and 135˚. Experimental results are compared with those of ANSYS and calculated by the simple beam theory. Good agreement among the results can be observed.

Stress Measurement of a Squarely Perforated Plate by Photoelastic Phase Shifting Method (광탄성 위상이동법에 의한 사각형 구멍주위의 응력해석)

  • Lee C.T.;Park T.G.;Jung J.;Panganiban H.;Chung T.J.;Baek T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.49-50
    • /
    • 2006
  • Photoelasticity is widely and conveniently used methods for whole field stress analysis. In this paper, 8-step photoelastic phase shifting method was performed by using a multi-purpose polariscope to measure the fringe orders along a specified line on the specimen containing a square hole. The material of the specimen is made of Polycarbonate. The measurement results by 8-step phase shifting method were compared with the those calculated by ABAQUS.

  • PDF

Quantitative Interpretation of Holographic Fringe by Using Phase Shifting Method and Digital Image Processing (위상변이법과 디지탈 영상처리를 이용한 홀로그래피 간섭무늬의 정량적 해석)

  • 고영욱;권영하;강대임;박승옥
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1728-1735
    • /
    • 1992
  • Holographic interferometry technique has been used for the measurement of whole-field deformation with high sensitivity. However there are some difficulties in quantitatively analyzing the holographic fringes. Recently, quantitative and automatic fringe analysis by using phase shifting method in interferometry has been studied in many fields. In this paper, a real time holographic interferometry system and a phase shifting method combined with digital image processing technique are employed to record and quantitatively analyze holographic fringe patterns. To evaluate our system and analyze errors, comparison of measured deformation with theoretical deformation of cantilever beam was carried out. The accuracy of 4.5% in our system was verified We have tried to apply this method to quantitatively measure the deformation of turbine blade under the bending force.

Fringe Analysis around an Inclined Crack Tip of Finite-Width Plate under Tensile Load by Photoelastic Phase-Shifting Method (광탄성 위상이동법을 이용한 인장판 경사균열 선단주위의 프린지 해석)

  • Li, Weizheng;Baek, Tae-Hyun;Hong, Dong-Pyo;Lee, Byung-Hee;Seo, Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • Photoelasticity is a technique of experimental methods and has been widely used in various domains of engineering to determine the stress distribution of structures. Without complicated mathematical formulation, this technique can conveniently provide a fairly accurate whole-field stress analysis for a mechanical structure. Here, stress distribution around an inclined crack tip of finite-width plate is studied by 8-step phase-shifting method. This method is a kind of photoelastic phase-shifting techniques and can be used for the determination of the phase values of isochromatics and isoclinics. According to stress-optic law, the stress distribution could be obtained from fringe patterns. The results obtained by polariscope arrangement combined with 8-step method and ABAQUS FEM simulations are compared with each other. Good agreement between them shows that 8-step phase-shifting method is reliable and can be used for determination of stress by experiment.

Stress Distribution of a Crane Hook by Photoelasticty Using 4-step Phase Shifting Method and finite Element Method (광탄성 4단계 위상 이동법과 유한요소법에 의한 크레인 훅의 응력분포 비교)

  • Baek, Tae-Hyun;Kim, Whan;Lee, Chun-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.38-44
    • /
    • 2004
  • An experimental study for a crane hook was performed to investigate the stress distribution along a certain line where the maximum and minimum stresses to be developed. On this line, the isoclinic fringe and/or principal stress direction is constant. The crane hook was modeled into a 2-dimensional plate made of urethane rubber called 'Photoflex' The Photoflex is very sensitive to a load and has low photoelastic fringe constant. The Tardy compensation method with the fringe sharpening process and the 4-step phase shifting method, was used for the photoelastic technique. Experimental results by photoelasticity were compared with the calculated stresses from the simple curved beam theory and tile finite element analysis. Ail the results were close to each other.