• 제목/요약/키워드: Freshwater Discharge

Search Result 172, Processing Time 0.024 seconds

Water Quality Behavior by the Sluice Gate Operation of Freshwater Lake (배수갑문 방류시점 및 방류량에 따른 담수호의 수질변화)

  • 김선주;김성준;김필식;이창형
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.91-101
    • /
    • 2003
  • Boryeong Seadike located at southwestern seashore of Korean peninsula completed in 1997. Sluice gate operation can be an important factor to maintain lake water quality and reduce retaining time of pollutants within lake. The lake water quality simulation model, WASPS was adopted and tested to find out proper gate operation timing and discharge amount. From the simulation of sluice gate operation, the results showed that the later the time of discharge for loosing 1 day successively to 6 days, the better the quality of water. Discharge amount showed relatively minor changes of water quality. This means that pollutants flowed into lake from watershed do not have enough time to mix up with deep water when the gate opened at early time. About 3 days delay of discharge caused the dilution effect to stabilize the lake water quality in case of Boryeong freshwater lake.

Numerical Modeling for Region of Freshwater Influence by Han River Discharge in the Yeomha Channel, Gyeonggi Bay (경기만 염하수로에서의 한강 유량에 따른 담수 영향범위 수치모델링)

  • Lee, Hye Min;Song, Jin Il;Kim, Jong Wook;Choi, Jae Yoon;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.4
    • /
    • pp.148-159
    • /
    • 2021
  • This study estimates the region of freshwater influence (ROFI) by Han River discharge in the Yeomha channel, Gyeonggi Bay. A 3-D numerical model, which is validated for reproducibility of variation in current velocity and salinity, is applied in Gyeonggi Bay. Distance of freshwater influence (DOFI) is defined as the distance from the entrance of Yeomha channel to the point where surface salinity is 28 psu. Model scenarios were constructed by dividing the Han River discharge into 10 categories (200~10,000 m3/s). The relation equation between freshwater discharge and DOFI was calculated based on performing a non-linear regression analysis. ROFI in Yeomha channel expands from the southern sea area of Ganghwa-do to the northern sea area of Yeongheung-do as the intensity of Han River discharge increases. The discharge and DOFI are a proportional relationship, and the increase rate of DOFI gradually decreases as discharge increases. Based on the relation equation calculated in this study, DOFI in the Yeomha channel can be estimated through the monthly mean Han River discharge. Accordingly, it will be possible to respond and predict problems related to damage to water quality and ecology due to rapid freshwater runoff.

Effect of the Freshwater Discharge on Seawater and Sediment Environment in a Coastal Area in Goheung County, South Korea

  • Nguyen, Hoang Lam;Jang, Min-Seok;Cho, Hyeon-Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.3
    • /
    • pp.270-276
    • /
    • 2014
  • Seasonal characteristics of water and sediment qualities and potential effects of the freshwater discharge from a small tide embankment interior in a coastal area in Goheung county were investigated from May to September in 2012. Chemical oxygen demand values (COD) were mostly higher than 2 mg/L in summer ebb tide, which exceed the standard value of water quality criteria II of acceptable level for aquaculture activities. Nitrogen and phosphorus were found as the limiting nutrients for algae growth in summer and fall and in spring, respectively. Nitrogen was the limiting nutrient for diatom growth in the whole studied period. The sudden high values of COD, ammonia, dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP) were found in water sample collected from station 5 which located in front of the tide embankment sluice gate during spring ebb tide. The freshwater discharge form the tide embankment interior maybe affected the survey areas during a short time interval. Mean values of eutrophication index of the surveyed coastal region in spring, summer and fall were all bigger than 1. Water quality was mostly considered at level II which acceptable for aquaculture activities. Sediment quality in this study was generally in the range of standard for fisheries environment.

A Study of Transient Estuarine Circulation in the Chunsu Bay, Yellow Sea: Impact of Freshwater Discharge by Artificial Dikes

  • Jeong, Kwang-Young;Ro, Young Jae;Kang, Tae Soon;Choi, Yang Ho;Kim, Changsin;Kim, Baek Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.242-253
    • /
    • 2020
  • This study examined the ef ects of freshwater discharge by artificial dikes from the Kanwol and Bunam lakes on the dynamics in the Chunsu Bay, Yellow Sea, Korea, during the summer season based on three-dimensional numerical modeling experiments. Model performances were evaluated in terms of skill scores for tidal elevation, velocity, temperature, and salinity and these scores mostly exceeded 90 %. The variability in residual currents before and after the freshwater discharge was examined. The large amount of lake water discharge through artificial dikes may result in a dramatically changed density field in the Chunsu Bay, leading to an estuarine circulation system. The density-driven current formed as a result of the freshwater inflow through the artificial dikes (Kanwol/Bunam) caused a partial change in the tidal circulation and a change in the scale and location of paired residual eddies. The stratification formed by strengthened static stability following the freshwater discharge led to a dramatic increase in the Richardson number and lasted for a few weeks. The strong stratification suppressed the vertical flux and inhibited surface aerated water mixing with bottom water. This phenomenon would have direct and indirect impacts on the marine environment such as hypoxia/anoxia formation at the bottom.

Characteristics of Water Quality and Chlorophyll-a in the Seawater Zone of the Yeongsan River Estuary: Long-term (2009-2018) Data Analysis (영산강 하구 해수역의 수질 및 식물플랑크톤 생체량(chlorophyll-a) 변동 특성: 장기(2009-2018년) 자료 분석)

  • Park, Sangjun;Sin, Yongsik
    • Ocean and Polar Research
    • /
    • v.44 no.1
    • /
    • pp.13-27
    • /
    • 2022
  • The Yeongsan River estuary was altered by a sea dike built in 1981 and the sluice gates in the dike were extended recently in 2014. The construction has caused changes in water properties and hydrodynamics and also produced disturbances including hypoxia and algal blooms. We analyzed the water quality and chlorophyll-a data (2009-2018) collected seasonally at 3 stations (Sts. 1-3) along the channel of the estuary by the Marine Environmental Monitoring System. Variations in water quality and chlorophyll-a (an index of phytoplankton biomass) were examined and their stressors were also identified by statistics including correlation and multivariate principal component analyses (PCA). The water quality was mainly affected by freshwater discharge from the dike. Salinity, nutrients and chlorophyll-a were especially affected by the discharge and the effect enhanced during summer and at the upper region near the sea dike decreasing downstream. Three factors were extracted for each station in the PCA accounting for 66.07-72.42% of the variations. The first was an external factor associated with freshwater discharge and the second and third were seasonal or biological factors. The results indicate that the water quality is more affected by short-termed and episodic events such as freshwater discharge than seasonal events and the influence of freshwater discharge on water quality is more extensive than that previously reported. This suggests that the boundary of the estuary should be extended to take into account the findings of this study and a management strategy linked to the freshwater zone is required to manage the integrity and water quality of the Yeongsan River estuary.

Behavior of Water Quality in Freshwater Lake of Tide Reclaimed Area Using SWMM and WASP5 Models (SWMM과 WASP5모형을 이용한 간척지 담수호의 수질거동 특성 조사)

  • 김선주;김성준;이석호;이준우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.148-160
    • /
    • 2002
  • Lake water quality assessment information is useful to anyone involved in lake management, from lakeshore owners to lake associations. 11 provides lake water quality, which can improve how to manage lake resources and how to measure current conditions. It also provides a knowledge base that can be used to protect and restore lakes. SWMM was applied to simulate the discharge and pollutant loads from Boryeong watershed, and WASP5 was applied to analyze the changes of water quality in Boryeong freshwater lake. In each model, the most suitable parameters were calculated through sensitive analysis and some parameters used default data. Simulated in SWMM and measured discharge showed the accuracy of 88.6%. T-N and T-P exceeds the criteria in the simulation of water quality in Boryeong freshwater lake, and control of pollutant loads in the main stream showed the most effective way. Integrated water quality management system was developed to give convenience in the operation of SWMM and WASP5 and data acquisition.

Variations in Marine Environments and Phytoplankton Community around Mokpo Harbour (목포항 주변해역의 수질 및 식물플랑크톤 변동 특성)

  • Cho, Eun-Seob
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1323-1336
    • /
    • 2010
  • This study was carried out to determine marine environments and phytoplankton community around Mokpo harbour on March to November during the period of 2004-2009. The remarkable fluctuations of marine environments were shown around Mokpo harbour depending on monthly and yearly. Among seasons, summer was a great that was associated with extremely releasing the freshwater from Youngsan River Weir, contributing to effect the fluctuations of water quality. Nevertheless of monthly and yearly, the molecular ratio of N:P was always shown in above 16 that was mainly attributed to freshwater discharge on March to November. This indicates that phosphorus playes an important role in limiting factor as growth in phytoplankton. During this study, Skeletonema costatum was found to be richer than the other groups of diatoms in terms of abundance and species number. Mokpo harbour, with the presence of a narrow avenue for exchange with offshore waters, has limited growth in phytoplankton, but this species is able to well adapt and fast grow under even high level of suspended solid and low intensity of light compared with other species. The discharge of freshwater is associated with significantly fluctuation of marine environments in this region, but it does not affect the quantitative and qualitative distribution of phytoplankton. It is necessary to persistently monitor based on water quality and phytoplankton community.

Assessment of Ecosystem Health during the Freshwater Discharge in the Youngsan River Estuary (영산강 하구둑 담수 방류에 따른 하구 건강성 평가)

  • Lee, Dahye;Park, Gunwoo;Lee, Changhee;Shin, Yongsik
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.46-56
    • /
    • 2017
  • The Youngsan River estuary was physically changed by the construction of a sea embankment at near the mouth of estuary. Weirs were also constructed recently in the freshwater zone and it was reported that algal blooms occur more frequently. The freshwater introduced into saltwater zone from sluice gates of the embankment affects water quality but it has not been addressed that how the freshwater inputs influence the health of marine ecosystem. In this study, we used the data of water properties and phytoplankton communities collected at three stations for 4 days including before the freshwater discharge, during the discharge and after 1 and 2 days of discharge events. WQI(water quality index), TRIX (trophic status index) and P-IBI(phytoplankton index of biotic integrity) were used to evaluate the ecosystem health and long-term data were also utilized to determine the criteria for P-IBI. The results showed that grades of the ecosystem health assessed by the indices were low at the station near the gates and increased as downstream. However, the temporal pattern of grades was different depending on methods. Grades of WQI and TRIX decreased during the discharge and restored after the discharge whereas the grades of P-IBI decreased slightly even after the discharge. This suggests that P-IBI is more applicable to estuarine systems where experience extreme change of water properties than WQI and TRIX since P-IBI includes phytoplankton that can respond quickly to the change.

Analytical Model of Salt Budget in the Upper Indian River Lagoon, Florida USA

  • Kim, Young-Taeg
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.33-42
    • /
    • 2004
  • Effect of freshwater discharge on the long-term salt balance in the Northern and Central Indian River Lagoon (IRL) is successfully simulated by a new analytical solution to a water balance-based one-dimensional salt conservation equation. Sensitivity tests show that the salinity levels drop abruptly even during the dry season (November to May) due to the high surface runoff discharge caused by tropical storms, depressions, and passage of cold fronts. Increasing surface runoff and direct precipitation has risen by ten times, lowering the salinity level down to 12psu in the Northern Central zone, and to 17 psu in the Northern zone. However, the salinity level in the Southern Central zone has decreased to 25 psu. High sensitivity of the Northern Central zone to freshwater discharge can be partially explained by a rapid urbanization in this zone. During the dry season, less sensitivity of the Southern Central zone to the increased surface runoff is attributed to the proximity of the zone to the Sebastian Inlet and a strong diffusion condition possibly resulting from the seawater intrusion to the surficial aquifer at the Vero Beach. During the wet season, however, the whole study area is highly sensitive to freshwater discharge due to the weak diffusion conditions. High sensitivity of the IRL to the given diffusion conditions guarantees that the fresh-water release occurs during strong wind conditions, achieving both flood control in the drainage basin and a proper salinity regime in the IRL.

Application of a Method Estimating Grid Runoff for a Global High-Resolution Hydrodynamic Model (전지구 고해상도 수문모델 적용을 위한 격자유량 추정 방법 적용 연구)

  • Ryu, Young;Ji, Hee-Sook;Hwang, Seung-On;Lee, Johan
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.155-167
    • /
    • 2020
  • In order to produce more detailed and accurate information of river discharge and freshwater discharge, global high-resolution hydrodynamic model (CaMa-Flood) is applied to an operational land surface model of global seasonal forecast system. In addition, bias correction to grid runoff for the hydrodynamic model is attempted. CaMa-Flood is a river routing model that distributes runoff forcing from a land surface model to oceans or inland seas along continentalscale rivers, which can represent flood stage and river discharge explicitly. The runoff data generated by the land surface model are bias-corrected by using composite runoff data from UNH-GRDC. The impact of bias-correction on the runoff, which is spatially resolved on 0.5° grid, has been evaluated for 1991~2010. It is shown that bias-correction increases runoff by 30% on average over all continents, which is closer to UNH-GRDC. Two experiments with coupled CaMa-Flood are carried out to produce river discharge: one using this bias correction and the other not using. It is found that the experiment adapting bias correction exhibits significant increase of both river discharge over major rivers around the world and continental freshwater discharge into oceans (40% globally), which is closer to GRDC. These preliminary results indicate that the application of CaMa-Flood as well as bias-corrected runoff to the operational global seasonal forecast system is feasible to attain information of surface water cycle from a coupled suite of atmospheric, land surface, and hydrodynamic model.