DOI QR코드

DOI QR Code

경기만 염하수로에서의 한강 유량에 따른 담수 영향범위 수치모델링

Numerical Modeling for Region of Freshwater Influence by Han River Discharge in the Yeomha Channel, Gyeonggi Bay

  • 이혜민 (인하대학교 해양과학과) ;
  • 송진일 (인하대학교 해양과학과) ;
  • 김종욱 (인하대학교 해양과학과) ;
  • 최재윤 (인하대학교 해양과학과) ;
  • 윤병일 (인하대학교 해양과학과) ;
  • 우승범 (인하대학교 해양과학과)
  • Lee, Hye Min (Department of Ocean Sciences, College of Natural Science, Inha University) ;
  • Song, Jin Il (Department of Ocean Sciences, College of Natural Science, Inha University) ;
  • Kim, Jong Wook (Department of Ocean Sciences, College of Natural Science, Inha University) ;
  • Choi, Jae Yoon (Department of Ocean Sciences, College of Natural Science, Inha University) ;
  • Yoon, Byung Il (Department of Ocean Sciences, College of Natural Science, Inha University) ;
  • Woo, Seung-Buhm (Department of Ocean Sciences, College of Natural Science, Inha University)
  • 투고 : 2021.06.25
  • 심사 : 2021.07.13
  • 발행 : 2021.08.31

초록

해수의 유동 및 염분 변화에 대한 재현성이 검증된 3차원 수치모델을 활용하여 한강 유량에 따른 경기만 염하수로에서의 담수 영향범위를 모의하였다. 염하수로 상류의 입구를 기준으로, 표층에서 28 psu의 염분이 나타나는 지점까지의 거리를 담수가 확산되는 거리로 정의하였으며, 한강으로부터 유출되는 담수 유량을 총 10가지(200~10,000 m3/s)로 구분하여 실험을 구성하였다. 수치모델 결과를 바탕으로, 비선형 회귀분석을 수행하여 유량과 담수 확산 거리에 대한 관계식을 산정하였다. 경기만 염하수로에서의 담수 영향범위는 한강 유량이 증가함에 따라 최소 강화도 남부 해역부터 최대 영흥도 북부 해역까지 확장된다. 유량과 담수 확산 거리는 비례하는 관계로 산정되었으며, 유량이 증가함에 따라 담수 확산 거리의 증가율은 점차적으로 감소하였다. 본 연구에서 산정한 관계식을 바탕으로 특정시기의 월 평균 한강 유량을 이용하여 염하수로에서의 담수 확산 거리를 추정할 수 있다. 이를 통해, 급격한 담수유출에 의한 수질 및 생태학적인 피해와 관련된 문제에 대응 및 예측할 수 있을 것으로 기대한다.

This study estimates the region of freshwater influence (ROFI) by Han River discharge in the Yeomha channel, Gyeonggi Bay. A 3-D numerical model, which is validated for reproducibility of variation in current velocity and salinity, is applied in Gyeonggi Bay. Distance of freshwater influence (DOFI) is defined as the distance from the entrance of Yeomha channel to the point where surface salinity is 28 psu. Model scenarios were constructed by dividing the Han River discharge into 10 categories (200~10,000 m3/s). The relation equation between freshwater discharge and DOFI was calculated based on performing a non-linear regression analysis. ROFI in Yeomha channel expands from the southern sea area of Ganghwa-do to the northern sea area of Yeongheung-do as the intensity of Han River discharge increases. The discharge and DOFI are a proportional relationship, and the increase rate of DOFI gradually decreases as discharge increases. Based on the relation equation calculated in this study, DOFI in the Yeomha channel can be estimated through the monthly mean Han River discharge. Accordingly, it will be possible to respond and predict problems related to damage to water quality and ecology due to rapid freshwater runoff.

키워드

과제정보

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임(2020-0-01389, 인공지능융합연구센터지원(인하대학교)). 이 논문은 2021년 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(경기씨그랜트).

참고문헌

  1. Chen, C., Beardsley, R.C., Cowles, G., Qi, J., Lai, Z., Gao, G. and Ji, R. (2013). An unstructured grid, finite-volume community ocean model FVCOM user manual. SMAST (p. 404). UMASSD Technical Report-13-0701, University of Massachusetts-Dartmouth.
  2. Chen, C., Liu, H. and Beardsley, R.C. (2003). An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology, 20(1), 159-186. https://doi.org/10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2
  3. Chen, C., Qi, J., Li, C., Beardsley, R.C., Lin, H., Walker, R. and Gates, K. (2008). Complexity of the flooding/drying process in an estuarine tidal-creek salt-marsh system: An application of FVCOM. Journal of Geophysical Research: Oceans, 113(C7).
  4. Cho, H.Y., Cho, B.J. and Kim, S.J. (2008). Estimation on the regions of freshwater influence using the seasonal salinity data in Asan Bay coastal zone. Journal of Korean Society of Coastal and Ocean Engineers, 20(2), 219-231 (in Korean).
  5. Connor, D.W., Gilliland, P.M., Golding, N., Robinson, P., Todd, D. and Verling, E. (2006). UKSeaMap: The mapping of seabed and water column features of UK seas, Joint Nature Conservation Committee, Peterborough.
  6. Flores, R.P., Rijnsburger, S., Horner-Devine, A.R., Souza, A.J. and Pietrzak, J.D. (2017). The impact of storms and stratification on sediment transport in the Rhine region of freshwater influence. Journal of Geophysical Research: Oceans, 122(5), 4456-4477. https://doi.org/10.1002/2016JC012362
  7. Horner-Devine, A.R., Hetland, R.D. and MacDonald, D.G. (2015). Mixing and transport in coastal river plumes. Annual Review of Fluid Mechanics, 47, 569-594. https://doi.org/10.1146/annurev-fluid-010313-141408
  8. Jeong, H.H., Kang, S.D., Jung, H.J., Jeong, D.J., Oh, J.H., Choi, S.M., An, Y.K., Choo, H.S., Choi, S.D., Kim, S.S., Kim, P.J., Lee, W.C. and Cho, H.S. (2017). The Current status of eutrophication and suggestions of the purification & restoration on surface sediment in the northwestern Gamak bay, Korea, 2017. Journal of the Korean Society for Marine Environment and Energy, 22(2), 105-113 (in Korean).
  9. Jeong, J.H., Kim, K.J., Yang, K.H., Chang, Y.Y., Park, S.H. and Kim, Y.T. (2007). Study on the temporal and spatial variations of salinity by freshwater discharge in Gyeonggi Bay. Journal of Environmental Impact Assessment, 16(6), 421-432 (in Korean).
  10. Kim, D.Y., Yoon, C.G., Rhee, H.P., Choi, J.H. and Hwang, H.S. (2019). Estimation of pollution contribution TMDL unit watershed in Han-River according to hydrological characteristic using flow duration curve. Journal of Korean Society on Water Environment, 35(6), 497-509 (in Korean). https://doi.org/10.15681/KSWE.2019.35.6.497
  11. Kim, Y.T., Park, M. and Kwon, H.H. (2020). Spatio-temporal summer rainfall pattern in 2020 from a rainfall frequency perspective. Journal of Korean Society of Disaster and Security, 93-104 (in Korean).
  12. Lee, H.M., Kim, J.W., Choi, J.Y., Yoon, B.I. and Woo, S.B. (2021). Mechanisms of salt transport in the Han River Estuary, Gyeonggi Bay. Journal of Korean Society of Coastal and Ocean Engineers, 33(1), 13-29 (in Korean). https://doi.org/10.9765/KSCOE.2021.33.1.13
  13. Lim, D.I., Rho, K.C., Jang, P.G., Kang, S.M., Jung, H.S., Jung, R.H. and Lee, W.C. (2007). Temporal-spatial variations of water quality in Gyeonggi Bay, west coast of Korea, and their controlling factor. Ocean and Polar Research, 29(2), 135-153 (in Korean). https://doi.org/10.4217/OPR.2007.29.2.135
  14. Park, G.S. (2004). Salinity distribution and ecological environment of Han river estuary. Journal of Wetlands Research, 6(1), 149-166 (in Korean).
  15. Park, H.J. and Min, B.H. (2018). Stress responses of Olive Flounder (Paralichthys olivaceus) to salinity changes. Korean Journal of Ichthyology, 30(1), 1-8 (in Korean). https://doi.org/10.35399/ISK.30.1.1
  16. Park, K., Oh, J.H., Kim, H.S. and Im, H.H. (2002). Case study: mass transport mechanism in Kyunggi Bay around Han River mouth, Korea. Journal of Hydraulic Engineering, 128(3), 257-267. https://doi.org/10.1061/(asce)0733-9429(2002)128:3(257)
  17. Simpson, J.H. (1997). Physical processes in the ROFI regime. Journal of Marine Systems, 12(1-4), 3-15. https://doi.org/10.1016/S0924-7963(96)00085-1
  18. Willmott, C.J. (1981). On the validation of models. Physical Geography, 2(2), 184-194. https://doi.org/10.1080/02723646.1981.10642213
  19. Yoon, B.I. and Woo, S.B. (2012). Relation of freshwater discharge and salinity distribution on tidal variation around the Yeomha channel, Han River Estuary. Journal of Korean Society of Coastal and Ocean Engineers, 24(4), 269-276 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.4.269