DOI QR코드

DOI QR Code

Development of a Numerical Model Considering Active Tsunami Generation

능동적 지진해일 생성을 고려한 지진해일 수치모형 개발

  • Jung, Taehwa (Department of Civil and Environmental Engineering, Hanbat National University) ;
  • Hwang, Sooncheol (School of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • Son, Sangyoung (School of Civil, Environmental, and Architectural Engineering, Korea University)
  • 정태화 (한밭대학교 건설환경공학과) ;
  • 황순철 (고려대학교 건축사회환경공학부) ;
  • 손상영 (고려대학교 건축사회환경공학부)
  • Received : 2021.06.25
  • Accepted : 2021.07.20
  • Published : 2021.08.31

Abstract

Seabed deformation due to the fault failure have both a spatial variation and temporal history. When the faulting process initiates at a certain point beneath seabed, the failure spreads out to neighboring points, resulting in temporal changes of deformation. In particular, such a process induces tsunami waves from the vertical motion of seabed. The uprising speed of seabed affects the formation of initial surface profile, eventually altering the arrival time and runup of tsunamis at the coast. In this work, we developed a numerical model that can simulate the generation and propagation of tsunami waves by considering the horizontal and vertical changes of seabed in an active and dynamic manner. For the verification of the model, it was applied to the 2011 Tohoku-oki earthquake in Japan and the results confirmed that the accuracy was improved compared to the existing passive and static model.

단층파괴에 의한 해저지형변화는 공간적으로 시간차를 가진다. 특정 지점에서 파괴가 발생하면 이웃지점으로 단층파괴가 전파하면서 시간차에 따른 단층파괴가 발생하며, 단층파괴시 연직방향으로 상승하면서 지진해일을 야기한다. 해저 지형의 상승속도는 지진해일 초기파형에 영향을 주며 결과적으로 지진해일의 도달시간 및 크기에 영향을 준다. 본 연구에서는 단층파괴에 의한 해저 지형의 수평적 및 수직적 변화를 능동적 및 동적으로 고려하여 지진해일의 생성 및 전파를 모의할 수 있는 수치모형을 개발하였다. 모델의 검증을 위하여 2011년 동일본대지진에 대해 적용하였으며 기존의 수동적 및 정적 모형에 비해 정확성이 개선되는 것을 확인하였다.

Keywords

References

  1. Dutykh, D., Dias, F. and Kervella, Y. (2006). Linear theory of wave generation by a moving bottom. Comptes Rendus de l'Academie des Sciences Paris, Series I 343, 499-504.
  2. Dutykh, D. and Dias, F. (2007). Water waves generated by a moving bottom. Tsunami and Nonlinear Waves (ed. A. Kundu), Geo Sciences. New York, Springer, 63-94.
  3. Hammack, J.L. (1973). A note on tsunamis: their generation and propagation in an ocean of uniform depth. Journal of Fluid Mechanics, 60(4), 769-799. https://doi.org/10.1017/S0022112073000479
  4. Imai, K., Satake, K. and Furumura, T. (2010). Amplification of tsunami heights by delayed rupture of great earthquakes along the Nankai trough. Earth, Planets and Space, 62(4), 427-432. https://doi.org/10.5047/eps.2009.12.005
  5. Ishii, M., Shearer, P.M., Houston, H. and Vidale, J.E. (2005). Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array. Nature, 435(7044), 933. https://doi.org/10.1038/nature03675
  6. Jung, T.-H. and Son, S. (2018). Propagation of tsunamis generated by seabed motion with time-history and spatial distribution: an analytical approach. Journal of Korean Society of Coastal and Ocean Engineers, 30(6), 263-269 (in Korean). https://doi.org/10.9765/KSCOE.2018.30.6.263
  7. Jung, T.-H. and Son, S. (2020a). The effect of surface ruptures on the propagation of tsunamis: An analysis of 1993 Hokkaido earthquake. Journal of Korean Society of Hazard Mitigation, 20(1), 365-371 (in Korean). https://doi.org/10.9798/kosham.2020.20.1.365
  8. Jung, T.-H. and Son, S. (2020b). The effect of fault failure with time difference on the runup height of East coast of Korea. Journal of Korean Society of Coastal and Ocean Engineers, 32(4), 2239-229 (in Korean).
  9. Kajiura, K. (1963). The leading wave of a tsunami. Bulletin Earthquake Research Institute. Tokyo University, 41, 535-571.
  10. Kervella, Y., Dutykh, D. and Dias, F. (2007). Comparison between three-dimensional linear and nonlinear tsunami generation models. Theoretical and Computational Fluid Dynamics, 21, 245-269. https://doi.org/10.1007/s00162-007-0047-0
  11. Kowalik, Z., Knight, W., Tom, L. and Whitmore, P.M. (2005). Numerical modeling of the global tsunami: Indonesian tsunami of 26 December 2004. Science of Tsunami Hazards, 23(1), 40-56.
  12. Lee, J.-W., Park, E.H., Park, S.-C. and Woo, S.-B. (2015). Development of the global tsunami prediction system using the finite fault model and the cyclic boundary condition. Journal of Korean Society of Coastal and Ocean Engineers, 27(6), 391-405. https://doi.org/10.9765/KSCOE.2015.27.6.391
  13. Ohmachi, T., Tsukiyama, H. and Matsumoto, H. (2001). Simulation of tsunami induced by dynamic displacement of seabed due to seismic faulting. Bulletin of the Seismological Society of America, 91(6), 1898-1909. https://doi.org/10.1785/0120000074
  14. Saito, T. and Furumura, T. (2009). Three-dimensional tsunami generation simulation due to sea-bottom deformation and its interpretation based on the linear theory. Geophysical Journal International, 178(2), 877-888. https://doi.org/10.1111/j.1365-246X.2009.04206.x
  15. Suppasri, A., Imamura, F. and Koshimura, S. (2010). Effects of the rupture velocity of fault motion, ocean current and initial sea level on the transoceanic propagation of tsunami. Coastal Engineering Journal, 52(2), 107-132. https://doi.org/10.1142/S0578563410002142
  16. Suzuki, W., Aoi, S., Sekiguchi, H. and Kunugi, T. (2011). Rupture process of the 2011 Tohoku-Oki mega-thrust earthquake (M9.0) inverted from strong-motion data. Geophysical Research Letters, 38(7), 1-6.
  17. Tivot, V.V. and Synolakis, C.E. (1998). Numerical modeling of tidal wave runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124(4), 157-171. https://doi.org/10.1061/(ASCE)0733-950X(1998)124:4(157)
  18. Wang, X. (2009). User manual for COMCOT version 1.7(first draft). Cornel University, 65.
  19. Wei, Y., Newman, A.V., Hayes, G.P., Titov, V.V. and Tang, L. (2014). Tsunami forecast by joint inversion of real-time tsunami waveforms and seismic or GPS data: application to the Tohoku 2011 tsunami. Pure and Applied Geophysics, 171(12), 3281-3305. https://doi.org/10.1007/s00024-014-0777-z