• Title/Summary/Keyword: Free-Surface Boundary Condition

Search Result 192, Processing Time 0.027 seconds

Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석)

  • Jung-Joong Kim;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The computations of the turbulent flow around the ship models with the free-surface effects were carried out. Incompressible Reynolds-Averaged Navier-Stokes equations were solved by using an explicit finite-difference method with the nonstaggered grid system. The method employed second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration. For the turbulence closure, a modified Baldwin-Lomax model was exploited. The location of the free surface was determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and a free-surface conforming grid was generated at each time step so that one of the grid boundary surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition was applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method developed in the present study, the computations were carried out for beth Wigley and Series 60 $C_B=0.6$ ship model and the computational results showed good agreements with the experimental data.

  • PDF

Calculation of Wavemaking Resistance of High Speed Catamaran Using a Panel Method

  • Lee, Seung-Joon;Joo, Young-Ryeol
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.36-43
    • /
    • 1996
  • In this work, a panel method is described, which cart solve the flow field round a surface-piercing body that experiences lift and wave resistance. As the body boundary condition, a Dirichlet type is employed, and as the free surface boundary condition the Poisson type is implemented, while in its discretization Dawson's 4-point upwind difference scheme is utilized, and as the Kutta condition a Morino-Kuo type is chosen. As to the type of singularity, source panels are distributed on the free surface, and source and dipole panels on the body surface, and dipole panels on the wake surface. For a sample run, a catamaran of the parabolic Wigley hull is chosen, for which experimental data are available, and the predictions by the numerical means and by the experiment are compared for a wide range of parameters.

  • PDF

A Study on the Numerical Radiation Condition in the Steady Wave Problem (정상파 문제의 방사조건에 관한 연구)

  • Lee, Gwang-Ho;Jeon, Ho-Hwan;Seong, Chang-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.97-110
    • /
    • 1998
  • The numerical damping and dispersion error characteristics associated with difference schemes and a panel shift method used for the calculation of steady free surface flows by a panel method are an analysed in this paper. First, 12 finite difference operators used for the double model flow by Letcher are applied to a two dimensional cylinder with the Kelvin free surface condition and the numerical errors with these schemes are compared with those by the panel shift method. Then, 3-D waves due to a submerged source are calculated by the difference schemes, the panel shift method and also by a higher order boundary element method(HOBEM). Finally, the waves and wave resistance for Wigley's hull are calculated with these three schemes. It is shown that the panel shift method is free of numerical damping and dispersion error and performs better than the difference schemes. However, it can be concluded that the HOBEM also free of the numerical damping and dispersion error is the most stable, accurate and efficient.

  • PDF

Potential How Analysis for a Hull with the Transom Stern (트랜섬 선미를 가지는 선형의 포텐셜 유동해석)

  • 최희종;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • This study focuses on the potential flow analysis for a hull with the transom stern. The method is based on a low order panel method. The Kelvin type free-surface boundary condition which is known to better fit experimental data for a high speed is applied. To treat a dry transom stern effect a special treatment for the free-surface boundary condition is adopted at the free-surface region after the transom stern. Trim and sinkage, which are important in high speed ships, are considered by an iterative method. Pressure and momentum approaches are used to calculate the wave resistance. Numerical calculations are performed for Athena hull and these results are compared with the experimental data and also other computational results.

  • PDF

A Study on the Design of Ship′s Bow Form using Surface Panel Method (판요소법을 이용한 선수형상 설계에 관한 연구[1])

  • Jae-Hoon Yoo;Hyo-Chul Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.3
    • /
    • pp.35-47
    • /
    • 1996
  • A surface panel method treating a boundary-value problem of the Dirichlet type is presented to design a three dimensional body with free surface corresponding to a prescribed pressure distribution. An integral equation is derived from Green's theorem, giving a relation between total potential of known strength and the unknown local flux. Upon discretization, a system of linear simultaneous equations is formed including free surface boundary condition and is solved for an assumed geometry. The pseudo local flux, present due to the incorrect positioning of the assumed geometry, plays a role f the geometry corrector, with which the new geometry is computed for the next iteration. Sample designs for submerged spheroids and Wigley hull and carried out to demonstrate the stable convergence, the effectiveness and the robustness of the method. For the calculation of the wave resistance, normal dipoles and Rankine sources are distributed on the body surface and Rankine sources on the free surface. The free surface boundary condition is linearized with respect to the oncoming flow. Four-points upwind finite difference scheme is used to compute the free surface boundary condition. A hyperboloidal panel is adopted to represent the hull surface, which can compensate the defects of the low-order panel method. The design of a 5500TEU container carrier is performed with respect to reduction of the wave resistance. To reduce the wave resistance, calculated pressure on the hull surface is modified to have the lower fluctuation, and is applied as a Dirichlet type dynamic boundary condition on the hull surface. The designed hull form is verified to have the lower wave resistance than the initial one not only by computation but by experiment.

  • PDF

Simulation of Nonlinear Water Waves using Boundary Element Method (경계요소법을 이용한 비선형파의 재현)

  • 오영민;이길성;전인식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.3
    • /
    • pp.204-211
    • /
    • 1993
  • Boundary element method is applied to simulate nonlinear water waves using Green's identity formula in a numerical wave flume. A system of linear equations is formulated from the governing equation and free surface boundary conditions in order to calculate velocity potential and water surface elevation at each nodal point. The velocity square terms are included in the dynamic free surface boundary condition. The free surface is treated as a moving boundary. the vertical variation of velocity potential being considered in calculating the time derivative of the velocity potential at the free surface. The present method is applied to simulate solitary wave and Stokes 2nd order wave, and shows excellent agreements with their theoretical values.

  • PDF

Numerical Simulation on the Free Surface using implicit boundary condition (내재적 경계 조건을 이용한 자유표면 유동 수치해석)

  • Lee G. H.;Baek J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.156-161
    • /
    • 1998
  • This describes a numerical method for predicting the incompressible unsteady laminar three-dimensional flows of fluid behaviour with free-surface. The elliptic differential equations governing the flows have been linearized by means of finite-difference approximations, and the resulting equations have been solved via a fully-implicit iterative method. The free-surface is defined by the motion of a set of marker particles and interface behaviour was investigated by way of a 'Lagrangian' technique. Using the GALA concept of Spalding, the conventional mass continuity equation is modified to form a volumetric or bulk-continuity equation. The use of this bulk-continuity relation allows the hydrodynamic variables to be computed over the entire flow domain including both liquid and gas regions. Thus, the free-surface boundary conditions are imposed implicitly and the problem formulation is greatly simplified. The numerical procedure is validated by comparing the predicted results of a periodic standing waves problems with analytic solutions or experimental results from the literature. The results show that this numerical method produces accurate and physically realistic predictions of three-dimensional free-surface flows.

  • PDF

A Simplified Numerical Method for Simulating the Generation of Linear Waves by a Moving Bottom (바닥의 움직임에 따른 선형파의 생성을 모의할 수 있는 간편 수치해석 기법)

  • Jae-Sang Jung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.2
    • /
    • pp.41-48
    • /
    • 2023
  • In this study, simplified linear numerical method that can simulate wave generation and transformation by a moving bottom is introduced. Numerical analysis is conducted in wave number domain after continuity equation, linear dynamic and kinematic free surface boundary conditions and linear kinematic bottom boundary condition are Fourier transformed, and the results are expressed in space domain by an inverse Fourier transform. In the wavenumber domain, the dynamic free water surface boundary condition and the kinematic free water surface boundary condition are numerically calculated, and the velocity potential in the mean water level (z = 0) satisfies the continuity equation and the kinematic bottom boundary condition. Wave generation and transformation are investigated when the triangular and rectangular shape of bottoms move periodically. The results of the simplified numerical method are compared with the results of previous analytical solutions and agree well with them. Stability of numerical results according to the calculation time interval (Δt) and the calculation wave number interval (Δk) was also investigated. It was found that the numerical results were appropriate when Δt ≤ T(period)/1000 and Δk ≤ π/100.

Free-surface Boundary Condition in Time-domain Elastic Wave Modeling Using Displacement-based Finite-difference Method (시간영역 변위근사 유한차분법의 자유면 경계조건)

  • Min Dong-Joo;Yoo Hai Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.77-86
    • /
    • 2003
  • We designed a new time-domain, finite-difference, elastic wave modeling technique, based on a displacement formulation. which yields nearly correct solutions to Lamb's problem. Unlike the conventional, displacement-based, finite-difference method using a node-based grid set (where both displacements and material properties such as density and Lame constants are assigned to nodal points), in our new finite-difference method, we use a cell-based grid set (where displacements are still defined at nodal points but material properties within cells). In the case of using the cell-based grid set, stress-free conditions at the free surface are naturally described by the changes in the material properties without any additional free-surface boundary condition. Through numerical tests, we confirmed that the new second-order finite differences formulated in the cell-based grid let generate numerical solutions compatible with analytic solutions unlike the old second-order finite-differences formulated in the node-based grid set.

COMPUTATIONAL STUDY ON TWO DIMENSIONAL DAM BREAKING SIMULATION USING LATTICE BOLTZMANN METHOD (LBM을 이용한 Dam Breaking 수치해석 연구)

  • Jung, Rho-Taek;Hasan, Md. Kamrul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.54-57
    • /
    • 2011
  • In this paper we present an algorithm about how to simulate two dimensional dam breaking with lattice Boltzmann method (LBM). LBM considers a typical volume element of fluid to be composed of a collection of particles that represented by a particle velocity distribution function for each fluid component at each grid point. We use the modified Lattice Boltzmann Method for incompressible fluid. This paper will represent detailed information on single phase flow which considers only the water instead of both air and water. Interface treatment and conservation of mass are the most important things in simulating free surface where the Interface is treated by mass exchange with the water region. We consider the surface tension on the interface and also bounce back boundary condition for the treatment of solid obstacles. We will compare the results of the simulation with some methods and experimental results.

  • PDF