• Title/Summary/Keyword: Free radical Peroxynitrite

Search Result 38, Processing Time 0.019 seconds

Comparison of Hydroxyl Radical, Peroxyl Radical, and Peroxynitrite Scavenging Capacity of Extracts and Active Components from Selected Medicinal Plants

  • Kwon, Do-Young;Kim, Sun-Ju;Lee, Ju-Won;Kim, Young-Chul
    • Toxicological Research
    • /
    • v.26 no.4
    • /
    • pp.321-327
    • /
    • 2010
  • The ability of 80% ethanol extracts from five medicinal plants, Aralia continentalis, Paeonia suffruticosa, Magnolia denudata, Anemarrhena asphodeloides, and Schizonepeta tenuifolia, to neutralize hydroxyl radical, peroxyl radical and peroxynitrite was examined using the total oxyradical scavenging capacity (TOSC) assay. Peroxyl radical was generated from thermal homolysis of 2,2'-azobis(2-methylpropionamidine) dihydrochloride (ABAP); hydroxyl radical by an iron-ascorbate Fenton reaction; peroxynitrite by spontaneous decomposition of 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). The oxidants generated react with $\alpha$-keto-$\gamma$-methiolbutyric acid (KMBA) to yield ethylene, and the TOSC of the substances tested is quantified from their ability to inhibit ethylene formation. Extracts from P. suffruticosa, M. denudata, and S. tenuifolia were determined to be potent peroxyl radical scavenging agents with a specific TOSC (sTOSC) being at least six-fold greater than that of glutathione (GSH). These three plants also showed sTOSCs toward peroxynitrite markedly greater than sTOSC of GSH, however, only P. suffruticosa revealed a significant hydroxyl radical scavenging capacity. Seven major active constituents isolated from P. suffruticosa, quercetin, (+)-catechin, methyl gallate, gallic acid, benzoic acid, benzoyl paeoniflorin and paeoniflorin, were determined for their antioxidant potential toward peroxynitrite, peroxyl and hydroxyl radicals. Quercetin, (+)-catechin, methyl gallate, and gallic acid exhibited sTOSCs 40~85 times greater than sTOSC of GSH. These four components also showed a peroxynitrite scavenging capacity higher than at least 10-fold of GSH. For antioxidant activity against hydroxyl radical, methyl gallate was greatest followed by gallic acid and quercetin. Further studies need to be conducted to substantiate the significance of scavenging a specific oxidant in the prevention of cellular injury and disease states caused by the reactive free radical species.

Antioxidant Activity of Rosa rugosa (해당화의 항산화 효과)

  • 서영완;이희정;안종웅;이범종;문성기
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.67-71
    • /
    • 2004
  • An antioxidant activity of Rosa rugosa extract and its solvent-partitioned fractions was determined not only by measuring lipid peroxide produced when a mouse liver homogenate was exposed to the air at 37$^{\circ}C$, using thiobarbituric acid (TBA) but also by evaluating the free radical scavenging effect against DPPH radical, authentic peroxynitrite, and 3-morpholinsydnonimine (SIN-1). All its partitioned fractions including crude extract showed potent scavenging effect against DPPH radical, peroxynitrite, and lipid peroxidation. n-BuOH fraction, in particular, was found to be the most effective in DPPH radical scavenging ability as well as inhibition against lipid peroxidation. The 15% aqueous MeOH fraction also showed a strong potency which was slightly lower than n-BuOH fraction. Based on these results, we suggest that Rosa rugosa could be useful for preventing an oxidative damage.

Screening of Peroxynitrite and DPPH Raoical Scavenging Activities from Salt Marsh Plants (염생식물로부터 Peroxynitrite와 DPPH 라디칼 소거 활성 검색)

  • 서영완;이희정;김유아;안종웅;이범종;문성기
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.57-61
    • /
    • 2004
  • A peroxynitrite is formed when superoxide and nitric oxide exist at near eqimolar ratio in biological systems. Although not a free radical by chemical nature, peroxynitrite is a powerful oxidant having a wide array of tissue damaging effects ranging from lipid oxidation and inactivation of enzymes and ion channels through protein oxidation and nitration to inhibition of mitochondrial respiration. During our search for new antioxidizing components from natural resources, twenty salt marsh plants were screened for their ONOO and DPPH radical scavenging activities. Among them, methanol extract of Rosa rugosa, lxeris tamagawaensis, Erigeron annus, Tetragonia tetragonoides, Imperata cylindrica, and Suaeda japonica inhibited more than 85% of peroxynitrite produced by 3-morpholinsydnonimine (SIN-1) at a concentration of 5 $\mu\textrm{g}$/$m\ell$. In addition, Rosa rugosa, Artemisia capillaris, Erigeron annus and Ixeris tamagawaensis showed significant scavenging effect against DPPH (1,1-diphenyl-2-picrylhydrazyl radical).

Studies on Screening of Seaweed Extracts for Peroxynitrite and DPPH Radical Scavenging Activities (과산화아질산염과 DPPH 라디칼에 대한 해조추출물의 소거 활성 효과)

  • Lee, Hee-Jung;Kim, You-Ah;Park, Ki-Eui;Jung, Hyun-Ah;Yoo, Jong-Su;Ahn, Jong-Woong;Lee, Burm-Jong;Seo, Young-Wan
    • Ocean and Polar Research
    • /
    • v.26 no.1
    • /
    • pp.59-64
    • /
    • 2004
  • As a part of our search for novel antioxidants from the seaweeds, we have investigated radical scavenging effect for their crude extracts using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, authentic peroxynitrite, and 3-morpholinsydnonimine (SIN-1), a peroxynitrite-generating species in vitro. Thirty-four seaweeds were screened for $ONOO^-$ and DPPH radical scavenging activities. A potent inhibitory effect against peroxynitrite generated by SIN-1 at $5{\mu}g/ml$ of methanol extracts was observed in order of Ishige okamurae(95.3%), Sargassum hemiphyllum(90.2%), Symphyocladia latiuscula(89.6%), Porphyra suborbiculata(86.7%), and Gelidium amamsii(85.9%), Also, a significant scavenging effect against direct authentic peroxynitrite was revekaled for methanol extracts of Ishige okamurae(66.2%) and Sargassum hemiphyllum(55.2%) and the acetone/methylene chloride(1:1) extract of Gigatina tenella (61.0%). In our measurement for evaluating the capacity to scavenge the stable free radical of DPPH, acetone/methylene chloride(1:1) extracts of Symphyocladia latiuscula, Gloiopeltis furcata, and Sargassum thunbergii and the methanol extract of Sargassum sp. showed an inhibitory potency of 85.8%, 82.8%, 74.1%, and 64.0%, respectively.

Metallothionein Induces Site-specific Cleavages in tRNAPhe

  • Seon, Jung-Yun;Koh, Moon-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.921-924
    • /
    • 2005
  • It is known that metallothionein (MT) plays a role in the scavenging of free radicals, which is produced under various stress conditions. MT may function as an antioxidant that protects against oxidative damage of DNA, protein, and lipid induced by superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide, and peroxynitrite. This study was undertaken to test the hypothesis that MT also protects from RNA damage induced by peroxynitrite, an important reactive nitrogen species that causes a diversity of pathological processes. A cell-free system was used. RNA damage was detected by the mobility of $tRNA^{Phe}$ in electrophoresis. Cleavages on tRNA were not induced by 3-morpholinosydnomine, which produces peroxynitrite directly. MT induced tRNA damage which was site specific.

Peroxynitrite and Hydroxyl Radical Scavenging Activity of Medicinal Plants (약용식물의 Peroxynitrite와 Hydroxyl radical 소거 활성)

  • Min, Oh-Jin;Kim, Min-Suk;Kwak, Byung-Hee;Rhyu, Dong-Young
    • Korean Journal of Plant Resources
    • /
    • v.21 no.4
    • /
    • pp.254-259
    • /
    • 2008
  • The radical scavenging activities of 9 medicinal plants on peroxynitrite ($ONOO^-$) and hydroxyl (${\cdot}OH$) radical were investigated using in vitro system. The water extracts of 9 medicinal plants showed the protective effect against $ONOO^-$ and ${\cdot}OH$ radical. In particular, Akebia quinata, Aster scaber, Cudrania tricuspidata, Diospyros kaki, Eriobotrya japonica, Lycium chinense, Parthenocissus tricuspidata and Polygonum aviculare exhibited $ONOO^-$-scavenging activity by about 50% at the concentration of $10{\mu}g/ml$. Although those $ONOO^-$-scavenging activities were lower than that of penicillamine (94.08${\pm}$3.04%) as a positive control, Eriobotrya japonica (89.87${\pm}$4.57%) was the most potent scavenger of $ONOO^-$ at the concentration of $10{\mu}g/ml$. Also, Diospyros kaki and Urtica angustifolia showed the strong${\cdot}$OH-scavenging activity than thiourea, positive control, at the concentration of lmg/ml. Our results indicate that 9medicinal plants may act as free radical scavengers and reduce damages caused by oxidative stress associated with $ONOO^-$ and${\cdot}$OH radical.

Scavenging Property of Pyungwi-san Herbal-acupuncture Solution on ROS and RNS (평위산(平胃散) 약침액(藥鍼液)의 활성산소 및 활성질소 소거능)

  • Lee, Hyo-Seung;Moon, Jin-Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.165-170
    • /
    • 2007
  • Pyungwi-san(PWS) have been using as a basic prescription of digestive disorder in Korean traditional medicine. This study was performed to examine the in vitro antioxidant activity of the extract using different antioxidant tests including by 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging, superoxide anion radical scavenging, metal chelating hydrogen peroxide scavenging, lipid peroxydation protective effect and scavenging effect of nitric oxide and peroxynitrite. Herbal-acupuncture solution of PWS(PWS-HS) exhibited a concentration-dependent inhibition of DPPH radical adduct formation and it showed dose-dependent free radical scavenging activity onto superoxide anions. In addition, the result of metal chelating hydrogen peroxide scavenging and ammonium thiocyanate experiments showed that PWS-HS was an active scavenger of hydroxyl radicals. Furthermore, it was also found to be effective in scavenging nitric oxide and peroxynitrite, well-known cytotoxic species that can oxidize several cellular components such as proteins, lipids and DNA.

Antioxidant Activity on Ethanol Extract from Boiled-water of Hizikia fusiformis (톳 자숙액 에탄올 추출물의 항산화 활성)

  • Park, Ki-Eui;Jang, Mi-Soon;Lim, Chi-Won;Kim, Yeon-Kye;Seo, Young-Wan;Park, Hee-Yeon
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.435-439
    • /
    • 2005
  • Antioxidant activity of the ethanol extract from boiled-water of Hizikia fusiformis (EBH) were compared with those of BHA, L-ascorbic acid, gallic acid, caffeic acid and (-)-catechin. The free radical scavenging ability against DPPH (1,1-diphenyl-2-picrylhydrazyl), authentic peroxynitrite and reducing power were measured as indices of antioxidant activity. EBH showed the potent DPPH radical and peroxynitrite scavenging activities, showing 85.23 and 96.97% at final concentration of $1000{\mu}g/ml$, respectively. The reducing power increased with the increasing amount of EBH (final concentration of 1, 10, 100 and $1000{\mu}g/ml$). Total phenolic content of EBH was 588 mg (-)-catechin/g at the final concentration $1000{\mu}g/ml$. Total phenolic contents correlated with DPPH radical scavenging activity $(R^2=0.766)$ and reducing power $(R^2=0.944)$. These results suggested that EBH could be a natural antioxidative source containing antioxidative components.

Increase of Peroxynitrite Production in the Rat Brain Following Transient Forebrain Ischemia

  • Kim, Hee-Joon;Kim, Seong-Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.205-212
    • /
    • 2001
  • It has been proposed that nitirc oxide is involved in the pathogenesis of cerebral ischemia-reperfusion. Because superoxide production is also enhanced during reperfusion, the cytotoxic oxidant peroxynitrite could be formed, but it is not known if this occurs following global forebrain ischemia-reperfusion. We examined whether peroxynitrite generation is increased in the vulnerable regions after forebrain ischemia-reperfusion. Transient forebrain ischemia was produced in the conscious rat by four-vessel occlusion. Rats were subjected to 10 or 15 min of forebrain ischemia. Immunohistochemical method was used to detect 3-nitrotyrosine, a marker of peroxynitrite production. 3-Nitrotyrosine immunoreactivity was enhanced in the hippocampal CA1 area 3 days after reperfusion. Furthermore, in rats subjected to ischemia for 15 min, this change was also observed in the lateral striatal region and the lateral septal nucleus $2{\sim}3$ days after reperfusion. The cresyl violet staining of adjacent sections showed that neuronal cell death was induced in parallel with the nitrotyrosine immunoreactivity in the hippocampal CA1 area and the lateral striatal region. Our findings suggest that oxygen free radical accumulation and consequent peroxynitrite production play a role in neuronal death caused by cerebral ischemia-reperfusion.

  • PDF

Cytotoxic Effect of Free Radical on Rat Primary Astrocytes (자유라디칼이 백서의 뇌별아교세포에 미치는 독성작용)

  • Jang, Hyuk;Kim, Myung-Sunny;Park, Hyun-Young;Kim, Yo-Sik;Cho, Kwang-Ho;Chung, Hun-Taeg;Park, Rae-Kil
    • Toxicological Research
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • Astrocytes generate free radicals including nitric oxide (NO) and reactive oxygen intermediates(ROI) which in turn play roles in the pathogenesis of degenerative diseases and sclerotic changes of the brain. This study was designed to evaluate the mechanism that free radicals contribute to the cytotoxicty of rat neonatal primary astrocytes. Treatment with NO donors alone including soldium nitroprusside(SNP), S-nitrosoglucathinoe (GSNO), and S-nitroso-n-acetylpenicillamine (SNAP) showed a little effect on the death of rat neonatal primary astrocytes, whereas SNP markedly induced the death of RAW 264.7 cells. ROI inculding H2O2 and O2 donor also slightly induced the death of rat primary astrocytes. However, 3-morpholinosydnonimine(SIN-1), a donor of peroxynitrite (ONOO), which is a reactive compound of NO with superoxide, significantly decreased the viability of rat primary astrocytes in a dose-dependent manner. Cells were retarded in outgrowth of viability of cellular processes with cell shrinkage and detachment from culture dishes. Hoechst staining demonstrated that SIN-1-induced cell death might be due to an apoptosis which was characterized by nuclear condensation and fragmentation. SIN-1-induced apoptosis was prevented by the pretreatment with superoxide dismutase (SOD) and catalase in rat primary astorocytes. Furthermore, prevention of the generation of reduced glutathione (GSH) by DL-buthionine-[S, R]-sulfoximine (BSO) aggravated the cytotoxic effects of SNP, benzene triol, and SIN-1 in rat primary astrocytes. Taken together, it is suggested that peroxynitrite may be a major effector of apoptosis and cellular antioxidant system is important for cell survival in rat prima교 astrocytes.

  • PDF