• 제목/요약/키워드: Free Ammonia

검색결과 217건 처리시간 0.022초

자체 pH 조정 기능을 갖는 다단 전해조에 의한 암모니아의 연속식 분해 (Continuous Decomposition of Ammonia by a Multi Cell-Stacked Electrolyzer with a Self-pH Adjustment Function)

  • 김광욱;김영준;김인태;박근일;이일희
    • Korean Chemical Engineering Research
    • /
    • 제43권3호
    • /
    • pp.352-359
    • /
    • 2005
  • 본 논문에서는 암모니아의 전해 분해를 위한 분리막 반응기의 음극방 및 양극방에서 물의 전해에 따른 암모니아 용액의 pH 변화가 고찰되었으며, 단위 전해 셀이 적층된 다단 전해 반응기에서의 암모니아의 연속식 분해 특성이 평가되었다. 분리막을 가지는 반응기에서 암모니아 용액의 전해 반응 시, 양극에서는 pH가 8 이하에서부터 수소 이온이 생성되는 물 분해 반응이 일어나며, 음극에서는 pH가 11 이상에서부터 수산기 이온이 생성되는 물 분해 반응이 일어나 암모니아 용액의 pH를 변화시켜 암모니아 전해 분해에 영향을 크게 미쳤으며, 음이온 교환막을 사용하는 경우가 양이온 교환막을 사용하는 경우보다 양극방에서 암모니아 분해에 유리한 알카리 분위기를 보다 효과적으로 유지할 수 있었다. 분리막 전해 반응기의 특성을 이용하여 자체 pH 조정 기능을 가지는 연속식 암모니아 전해 반응기가 새롭게 고안하였고, 여기서는 pH-조정조 탱크 용액을 두고 이의 용액 일부를 음극방으로 순환시킴으로써, 양극방으로 주입되는 pH-조정조의 용액의 pH를 높여 암모니아 분해율을 높일 수 있었다. 또한, 그러한 반응기를 이용한 salt-free 연속식 암모니아 전해 분해 공정이 제시되었으며, 이러한 공정에서는 염소 이온을 가지는 암모니아 용액의 80%까지 연속적으로 암모니아를 환경에 무해한 질소로 분해 시킬 수 있었다.

Triglycine 수용액에 미치는 감마선의 영향 3. 감마선에 의한 분해산물에 관하여 (The Effect of Gamma-Irradiation on Aqueous Solutions of Triglycine 3. Mechanism for Gamma-ray Induced Degradation Products)

  • 강만식
    • 한국동물학회지
    • /
    • 제7권2호
    • /
    • pp.1-5
    • /
    • 1964
  • 산소 용존하의 triglycine 수용액을 ${\gamma}-선으로$ 조사하여 carbonly 화합물, glycine, ammonia, ECO_2$ 및 수소를 검출하였다. 이 수용액계에서 일어나는 방사선화학반응을 초과정과 분해산물을 가지고 논의하였다. Triglycine 분자는 먼저 중간생성물을 이루게 되고 이것이 carbonyl 화합물과 acid amide 로 분해하게 된다. 이들은 일차적 또는 이차적으로 free radical 의 작용에 의하여 acetamide, glycie, glyoxylic acid, formic acid, oxalic acid, ammonia 및 ECO_2$ 로 분해하게 된다. 또한 radical-radical 결합에 의하여 생성물이 생길 미확인반응의 가능성도 있으며 타당한 물질평행은 앞으로의 연구에 기대한다.

  • PDF

A shell layer entrapping aerobic ammonia-oxidizing bacteria for autotrophic single-stage nitrogen removal

  • Bae, Hyokwan;Choi, Minkyu
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.376-381
    • /
    • 2019
  • In this study, a poly(vinyl) alcohol/sodium alginate (PVA/SA) mixture was used to fabricate core-shell structured gel beads for autotrophic single-stage nitrogen removal (ASNR) using aerobic and anaerobic ammonia-oxidizing bacteria (AAOB and AnAOB, respectively). For stable ASNR process, the mechanical strength and oxygen penetration depth of the shell layer entrapping the AAOB are critical properties. The shell layer was constructed by an interfacial gelling reaction yielding thickness in the range of 2.01-3.63 mm, and a high PVA concentration of 12.5% resulted in the best mechanical strength of the shell layer. It was found that oxygen penetrated the shell layer at different depths depending on the PVA concentration, oxygen concentration in the bulk phase, and free ammonia concentration. The oxygen penetration depth was around $1,000{\mu}m$ when 8.0 mg/L dissolved oxygen was supplied from the bulk phase. This study reveals that the shell layer effectively protects the AnAOB from oxygen inhibition under the aerobic conditions because of the respiratory activity of the AAOB.

INTRACELLULAR AMINO ACID PROFILE OF RUMEN BACTERIA AS INFLUENCED BY UREA FEEDING AND ITS DURATION

  • Kobayashi, Y.;Wakita, M.;Hoshino, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제6권4호
    • /
    • pp.619-622
    • /
    • 1993
  • Rumen bacterial amino acids in sheep on urea diet were monitored to assess a possible change in amino acid synthesis as a long term response to high rumen ammonia environment. A sheep was fed a semipurified diet with soybean meal, followed by a diet with urea as a main nitrogen source. Mixed rumen bacteria were harvested from ruminal fluid taken 3 h after feeding (twice in soybean meal feeding and 6 times in urea feeding) and fractionated as cell wall, proteins and protein-free cell supernatant of monitor amino acids in each fraction. Ruminal ammonia concentration at the sampling ranged from 5.7 to 39.5 mgN/dl. Cell wall and protein fractions of mixed rumen bacteria were stable in their amino acid composition regardless of nitrogen sources of diet and the feeding duration. However, protein-free cell supernatant fraction showed a higher alanine proportion with urea feeding (18.6 and 28.2 molar % of alanine for samples from sheep fed soybean meal and urea, respectively) and its duration (20.6 and 32.9 molar % for samples from sheep on urea diet for 1 and 65 days, respectively). Total free amino acid level of bacteria was depressed in the initial period of urea feeding but restored on 65th day of the feeding. These results suggest that an alanine synthesizing system may develop in rumen bacteria as urea feeding becomes longer.

Flow of Soluble Non-ammonia Nitrogen in the Liquid Phase of Digesta Entering the Omasum of Dairy Cows Given Grass Silage Based Diets

  • Choi, C.W.;Choi, C.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권10호
    • /
    • pp.1460-1468
    • /
    • 2003
  • An experiment was conducted to quantify the flow of soluble non-ammonia nitrogen (SNAN) in the liquid phase of ruminal (RD) and omasal digesta (OD), and to investigate diurnal pattern in SNAN flow in OD. Five ruminally cannulated Finnish-Ayrshire dairy cows in a $5{\times}5$ Latin square design consumed a basal diet of grass silage and barley grain, and that supplemented with four protein feeds (kg/d DM basis) as follows: skimmed milk powder (2.1), wet distiller' solubles (3.0), untreated rapeseed meal (2.1) and treated rapeseed meal (2.1). Ruminal digesta was sampled using a vacuum pump, whereas OD was collected using an omasal sampling system at 1.0 h interval during a 12 h feeding cycle. Both RD and OD were acidified, centrifuged to remove microbes and precipitated with trichloroacetic acid followed by centrifugation. The SNAN fractions (free amino acid (AA), peptide and soluble protein) in RD and OD were assessed using ninhydrin assay. Free AA, peptide and soluble protein averaged 60.0, 89.4 and 2.1 g/d, respectively, for RD, and 81.8, 121.5 and 2.5 g/d, respectively, for OD. Although free AA flow was relatively high, mean peptide flow was quantitatively the most important fraction of SNAN, indicating that degradation of peptide to AA rather than hydrolysis of soluble protein to peptide or deamination may be the most limiting step in rumen proteolysis. Diurnal pattern in flow of peptide including free AA in OD during a 12 h feeding cycle peaked 1 h post-feeding, decreased by 3 h post-feeding and was relatively constant thereafter. Protein supplementation showed higher flow of peptide including free AA immediately after feeding compared with no supplemented diet. There were no differences among protein supplements in diurnal pattern in flow of peptide including free AA in OD.

연속회분반응기의 아질산 축적 특성과 질산화 및 탈질 미생물의 정량적 분포 연구 (Nitrite Accumulation Characteristics and Quantitative Analyses of Nitrifying and Denitrifying Bacteria in a Sequencing Batch Reactor)

  • 김동진;권현진;윤정이;차기철
    • 한국물환경학회지
    • /
    • 제24권3호
    • /
    • pp.383-390
    • /
    • 2008
  • Recently, the interests on economical nitrogen removal from wastewater are growing. As a method of the novel nitrogen removal technology, nitrogen removal via nitrite pathway by selective inhibition of free ammonia and free nitrous acid on nitrite oxidizing bacteria have been intensively studied. The inhibition effects of free ammonia and free nitrous acid are low when domestic wastewater is used, however, because of its relatively lower nitrogen concentration than the wastewater from industry and landfill, etc. In this study, a sequencing batch reactor (SBR) is proposed for nitrogen removal to investigate the effect of the low nitrogen concentration on nitrite accumulation. Nitrification efficiency reached almost 100% during the aerobic cycle and the maximum specific nitrification rate ($V_{max,nit}$) reached $17.8mg\;NH_4{^+}-N/g\;MLVSS{\bullet}h$. During the anoxic cycle, average denitrification efficiency reached 87% and the maximum specific denitrification rate ($V_{max,den}$) reached $9.8mg\;NO_3{^-}-N/g\;MLVSS{\bullet}h$. From the analysis the main reason of nitrite accumulation in the SBR was free nitrous acid rather than free ammonia. Nitrite accumulation increased with the decrease of organic content in the wastewater and the mechanism is not well understood yet. From the result of fluorescent in situ hybridization, the distribution of nitrite oxidizing bacteria was in equilibrium with ammonium oxidizing bacteria when nitrite accumulation did not occur.

종별 동체 유리아미노산 (Free Amino Acid Composition of Tap Root in Panax species)

  • Lee, Mee-Kyoung;Park, Hoon
    • Journal of Ginseng Research
    • /
    • 제20권3호
    • /
    • pp.291-298
    • /
    • 1996
  • Free amino acid (FAA) compositions in the central part (pith-xylem : P-X) and the outer part (phloem-cortex : P-C) of root were investigated for P ginseng (P.g), p. quinque-folium (P.q) an, B P nutoginsen (P.n) by an amino acid analyzer. Total free amlno acids content (TFAA) was highest in p.맥 and lowest in p.n. The TFAA of P-Xs were higher than those of P-Cs in these Panax species except p.n. The higher the TFAA in P-X, the higher the ratio of TFAA in P-X to that in P-C. Seven- teen free amino acids and ammonia were identified, and four unknown peaks appeared before the usual amino acids eluted. The total aspartic acid equivalent of these unknown peaks was corresponded to 77% of known TFAA in P-C of p.n, 17% in P. n, and 7% in p.q. The pattern of unknown peaks of p.g was different from p.q and similar to P.n. In all samples six major amino acids and ammonia accounted for 90~95% of TFAA. Arginine was comprised from 29% (P.n) to 43% (P.g) by amole as amino acid and from 50 to 71% by amole as nitrogen (N amole) in TFAA. Ammonia was the second abundant one by amole and the third by Npmole. Histidine was the second by Npmole. Praline was one of major FAA in p.q. Pattern similarity of FAA composition (excluding Arg and Am) by simple correlation was closer between P-C of p.g and P-X of p.q than between both P-Xs and quite different between the P-X of p.g and that of p.n. The pattern similarities of major FAA percent abundance excluding Arg and Am were significant only between P-X and P-C of the same species. Arginine content (amole) had positive correlation (r=0.859, p=0.05) with Arg/Am among species. Ammonia content was higher than arginine in p.n. Tryptophan content was greatest in p.n among species and higher than lysine only in p.n. The ratios of TFAA to N(W/W) were in the range of 3.89~4.14 for TFAA and 3.61~3.92 for TFAA plus ammonia.

  • PDF

암모니아성 질소 첨가에 따른 상향류 혐기성 블랭킷 반응조내 입상슬러지의 저해 기작 (Inhibition Mechanism of Ammonia Nitrogen on the Granules in an Upflow Anaerobic Sludge Blanket Reactor)

  • 이채영;한선기;신항식
    • 한국물환경학회지
    • /
    • 제23권6호
    • /
    • pp.993-997
    • /
    • 2007
  • The upflow anaerobic sludge blanket (UASB) reactor can be effective for treating simple organic compounds containing high concentration of ammonia nitrogen. The chemical oxygen demand (COD) removal efficiency was about 80% at ammonia nitrogen concentration up to 6,000 mg-N/L. This result also showed that it would be possible to treat propionate effectively at free ammonia nitrogen concentration up to 724 mg-N/L if sufficient time was allowed for adaptation. However the specific methanogenic activity (SMA) of granule was lower than that of granule in the reactor with lower ammonia nitrogen concentration. At 8,000 mg-N/L, the inhibition of high ammonia concentration was observed with evidence of increase of the volatile suspended solids (VSS) concentration in the effluent. It might be ascribed to the decrease in the content of extracellular polymer (ECP), which resulted to the sloughing off of obligated proton-reducing acetogens and heterogenotrophic methanogens from the exterior of granular sludge. This caused a great portion of the finely sludge to be easily washed out. Therefore, failure to maintain the balance between these two groups of microorganism cause accumulation of the hydrogen partial pressure in the reactor, which could have inhibited the growth of acetate utilizing methanogens.

CBD 방법에 의한 ZnS 버퍼층 형성의 착화제 농도에 따른 영향 (Effect of the Concentration of Complexing Agent on the Formation of ZnS Buffer Layer by CBD Method)

  • 권상직;유인상
    • 한국전기전자재료학회논문지
    • /
    • 제30권10호
    • /
    • pp.625-630
    • /
    • 2017
  • ZnS was chemically deposited as a buffer layer alternative to CdS, for use as a Cd-free buffer layer in $Cu(In_{1-x}Ga_x)Se_2$ (CIGS) solar cells. The deposition of a thin film of ZnS was carried out by chemical bath deposition, following which the structural and optical properties of the ZnS layer were studied. For the experiments, zinc sulfate hepta-hydrate ($ZnSO_4{\cdot}7H_2O$), thiourea ($SC(NH_2)_2$), and ammonia ($NH_4OH$) were used as the reacting agents. The mole concentrations of $ZnSO_4$ and $SC(NH_2)_2$ were fixed at 0.03 M and 0.8 M, respectively, while that of ammonia, which acts as a complexing agent, was varied from 0.3 M to 3.5 M. By varying the mole concentration of ammonia, optimal values for parameters like optical transmission, deposition rate, and surface morphology were determined. For the fixed mole concentrations of $0.03M\;ZnSO_4{\cdot}7H_2O$ and $0.8M\;SC(NH_2)_2$, it was established that 3.0 M of ammonia could provide optimal values of the deposition rate (5.5 nm/min), average optical transmittance (81%), and energy band gap (3.81 eV), rendering the chemically deposited ZnS suitable for use as a Cd-free buffer layer in CIGS solar cells.

암모니아의 특성에 따른 활용 현황과 부식 손상에 대한 고찰 (A Study on the Utilization Status and Corrosion Damage with Ammonia Characteristics)

  • 이승준
    • 한국표면공학회지
    • /
    • 제56권2호
    • /
    • pp.125-136
    • /
    • 2023
  • Recently, ammonia has emerged as an alternative energy source that can reduce carbon emissions in various industries. Ammonia is used as a fuel in internal combustion engines because it contains no carbon in its components and does not emit any carbon when burned. It is also used in various fields such as fertilizer production, refrigeration, cleaning and disinfection, and drug manufacturing due to its unique characteristics, such as high volatility and easy solubility in water. However, it is highly corrosive to metals and is a toxic gas that can pose a risk to human health, so caution must be exercised when using it. In particular, stress corrosion cracking may occur in containers or manufacturing facilities made of carbon-manganese steel or nickel steel, so special care is needed. As ammonia has emerged as an alternative fuel for reducing carbon emissions, there is a need for a rapid response. Therefore, based on a deep understanding of the causes and mechanisms of ammonia corrosion, it is important to develop new corrosion inhibitors, improve corrosion monitoring and prediction systems, and study corrosion prevention design.