Continuous Decomposition of Ammonia by a Multi Cell-Stacked Electrolyzer with a Self-pH Adjustment Function

자체 pH 조정 기능을 갖는 다단 전해조에 의한 암모니아의 연속식 분해

  • Received : 2004.12.20
  • Accepted : 2005.01.20
  • Published : 2005.06.30

Abstract

This work has studied the changes of pH in both of anodic and cathodic chambers of a divided cell due to the electrolytic split of water during the ammonia decomposition to nitrogen, and has studied the continuous decomposition characteristics of ammonia in a multi-cell stacked electrolyzer. The electrolytic decomposition of ammonia was much affected by the change of pH of ammonia solution which was caused by the water split reactions. The water split reaction occurred at pH of less than 8 in the anodic chamber with producing proton ions, and occurred at pH of more than 11 in the cathodic chamber with producing hydroxyl ions. The pH of the anodic chamber using an anion exchange membrane was sustained to be higher than that using a cation exchange membrane, which resulted in the higher decomposition of ammonia in the anodic chamber. By using the electrolytic characteristics of the divided cell, a continuous electrolyzer with a self-pH adjustment function was newly devised, where a portion of the ammonia solution from a pHadjustment tank was circulated through the cathodic chambers of the electrolyzer. It enhanced the pH of the ammonia solution fed from the pH-adjustment tank into the anodic chambers of the electrolyzer, which caused a higher decomposition yield of ammonia. And then, based on the electrolyzer, a salt-free ammonia decomposition process was suggested. In that process, ammonia solution could be continuously decomposed into the environmentally-harmless nitrogen gas up to 83%, when chloride ion was added into the ammonia solution.

본 논문에서는 암모니아의 전해 분해를 위한 분리막 반응기의 음극방 및 양극방에서 물의 전해에 따른 암모니아 용액의 pH 변화가 고찰되었으며, 단위 전해 셀이 적층된 다단 전해 반응기에서의 암모니아의 연속식 분해 특성이 평가되었다. 분리막을 가지는 반응기에서 암모니아 용액의 전해 반응 시, 양극에서는 pH가 8 이하에서부터 수소 이온이 생성되는 물 분해 반응이 일어나며, 음극에서는 pH가 11 이상에서부터 수산기 이온이 생성되는 물 분해 반응이 일어나 암모니아 용액의 pH를 변화시켜 암모니아 전해 분해에 영향을 크게 미쳤으며, 음이온 교환막을 사용하는 경우가 양이온 교환막을 사용하는 경우보다 양극방에서 암모니아 분해에 유리한 알카리 분위기를 보다 효과적으로 유지할 수 있었다. 분리막 전해 반응기의 특성을 이용하여 자체 pH 조정 기능을 가지는 연속식 암모니아 전해 반응기가 새롭게 고안하였고, 여기서는 pH-조정조 탱크 용액을 두고 이의 용액 일부를 음극방으로 순환시킴으로써, 양극방으로 주입되는 pH-조정조의 용액의 pH를 높여 암모니아 분해율을 높일 수 있었다. 또한, 그러한 반응기를 이용한 salt-free 연속식 암모니아 전해 분해 공정이 제시되었으며, 이러한 공정에서는 염소 이온을 가지는 암모니아 용액의 80%까지 연속적으로 암모니아를 환경에 무해한 질소로 분해 시킬 수 있었다.

Keywords

References

  1. Feng, C., Sugiura, N., Shimada, S. and Maekawa, T., 'Development of a High Performance Electrochemical Waste Water Treatment System,' Journal of Hazardous Materials, B103, 65-78 (1992)
  2. Bae, S. K. and Park, S. C., 'The Study on the Removal of Ammonia in Wastewater by Electrochemical Method,' J. of Kor. Soc. Env. Engs., 6(1), 1044-55(1984)
  3. Lin, S. H. and Wu, C. L., 'Electrochemical Removal of Nitrate and Ammonia for Aquaculture,' Wat.Res., 30(3), 715-721(1996) https://doi.org/10.1016/0043-1354(95)00208-1
  4. Bouwer, E. J. and Crowe, P. B., 'Biological Process in Drinking Water Treatment,' J. AWWA, 80(9), 82-93(1988)
  5. Lopez de Mishima, B. A., Lescano D., Holgado, M. T. and Mishima, H. T., 'Electrochemical Oxidation of Ammonia in Alkaline Solutions: its Application to an Amperometric Sensor,' Electrochemica Acta, 43, 395-404(1997) https://doi.org/10.1016/S0013-4686(97)00061-3
  6. Gootzen J. F. E., Wonders, A. H., Visscher, W., Santen R. A. V., 'DEMS and Cyclic Voltammetry Study of $NH_{3}$ Oxidation on Platinized Platinum,' Electrochemica Acta, 43, 1851-1861(1997) https://doi.org/10.1016/S0013-4686(97)00285-5
  7. Vooys, A. C. A., Koper, M. T. M., Santen, R. A. and Veen, J. A. R., 'Mechanisms of Electrochemical Reduction and Oxidation of Nitric Oxide,' J. Electroanal. Chem., 506(2), 127-137(2001) https://doi.org/10.1016/S0022-0728(01)00491-0
  8. Kim, K. W., Kim, Y. J., Kim, I. T., Park, G. I. and Lee, I. H., 'Electrolytic Decomposition Mechanism of Ammonia to Nitro- Gen at $IrO_{2}$ Anode,' Korean Chem. Eng. Res., 42(5), 524-531(2004)
  9. Kim, K. W., Kim, Y. J., Kim, I. T., Park, G. I. and Lee, I. H., 'Electrochemical Decomposition Characteristics of Ammonia by the Catalytic Oxide Electrodes,' Korean Chem. Eng. Res., 42(5), 524-531(2004)
  10. Kim, K. W., Lee, E. H., Kim, J. S., Shin, K. H. and Kim, K. H., 'Study on the Electroactivity and Non-Stochiometry of a Ru- Based Mixed Oxide Electrode,' Electrochimica Acta., 46, 915- 921(2001) https://doi.org/10.1016/S0013-4686(00)00674-5
  11. Kim, K. W., Lee, E. H., Kim, J. S., Shin, K. H. and Chung, B. I., 'A Study on Performance Improvement of Ir Oxide-Coated Titanium Electrode for Organic Destruction,' Electrochimica Acta., 47, 2525-2531(2002) https://doi.org/10.1016/S0013-4686(02)00129-9
  12. Bryabt, E. A., Fulton, G. P. and Budd, G. C., 'Disinfection Alternatives for Safe Drinking Water,' Van Nostrand Reinhold, N.Y. (1992)
  13. Boodts, J. F. C. and Trasatti, S., 'Effect of Composition on the Electrocatalytic Acitivty of the Ternary Oxide $Ru_{0.3}Ti_{(0.7-x)}SnO_{2}$,' J. Eectrochem. Soc., 137(12), 3784-3789(1990) https://doi.org/10.1149/1.2086301
  14. Trasatti, S., 'Electrocatalysis in the Anodic Evolution of $O_{2}$ and $Cl_{2}$,' Electrochimica Acta, 29, 1503-1512(1984) https://doi.org/10.1016/0013-4686(84)85004-5