Acknowledgement
이 논문은 2021년 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(2,100마력급 LNG- 암모니아 혼소 엔진 개발, 과제번호 20210606).
References
- P. Dimitriou, R. Javaid, A review of ammonia as a compression ignition engine fuel, Int. J. Hydrogen Energy, 45 (2020) 7098-7118. https://doi.org/10.1016/j.ijhydene.2019.12.209
- A. Pearson, Refrigeration with ammonia, Int. J. Refrig., 31 (2008) 545-551. https://doi.org/10.1016/j.ijrefrig.2007.11.011
- A.A. Lima, G.D. Leite, A.A. Ochoa, C.A. Santos, J.A. Costa, P.S. Michima, A.M. Caldas, Absorption refrigeration systems based on ammonia as refrigerant using different absorbents: review and applications, Energies, 14 (2020) 48.
- R. K. Dreepaul, A study of alternative refrigerants for the refrigeration and air conditioning sector in mauritius, Earth Environ. Sci., 93 (2017) 012054.
- S. J. Benson, C. J. Lennard, P. Maynard, D. M. Hill, A. S. Andrew, C. Roux, Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS) - discrimination of ammonium nitrate sources, Sci. Justice., 49 (2009) 73-80. https://doi.org/10.1016/j.scijus.2009.04.005
- G. Chehade, I. Dincer, Progress in green ammonia production as in green ammonia production as potential carbon-free fuel, Fuel, 299 (2021) 120845.
- J. Guo, P. Chen, Catalyst: NH3 as an Energy Carrier, Chem., 3 (2017) 709-712. https://doi.org/10.1016/j.chempr.2017.10.004
- F. Chang, W. Gao, J. Guo, P. Chen, Emerging materials and methods toward ammonia-based energy storage and conversion, Adv. Mater., 33 (2021) 2005721.
- W. S. Chai, Y. Bao, P. Jin, G. Tang, L. Zhou, A review on ammonia, ammonia-hydrogen and ammonia-methane fuels, Renewable Sustainable Energy Rev., 147 (2021) 111254.
- C. Zou, B. Xiong, X. Huaqing, D. Zheng, The role of new energy in carbon neutral, Pet. Explor. Dev., 48 (2021) 411-420. https://doi.org/10.1016/S1876-3804(21)60039-3
- M. Sonachalam, P. Paulpandian, V. Manieniyan, Emission reduction in diesel engine with acetylene gas and biodiesel using inlet manifold injection, Clean Technol. Environ. Policy, 22 (2020) 2177-2191. https://doi.org/10.1007/s10098-020-01968-y
- M. Sonachalam, V. Manieniyan, Impact of secondary fuel injector in various distance on direct injection diesel engine using acetylene-bio diesel in reactivity controlled compression ignition mode, Energy Sources Part A Recovery Util. Environ. Eff., 22 (2020) 1810177.
- X. Xu, E. Liu, N. Zhu, F. Liu, F. Qian, Review of the current status of ammonia-blended hydrogen fuel engine development, Energies, 15 (2022) 1023.
- M.C. Chiong, H.S. Kang, N.M.R. Shaharuddin, S. Mat, L.K. Quen, K.H. Ten, M. C. Ong, Challenges and opportunities of marine propulsion with alternative fuels, Renew Sustain. Energy Rev., 149 (2021) 111397.
- F.Y.A. Aboosi, M.M.E. Halwagi, M. Margaux, R.B. Nielsen, Renewable ammonia as an alternative fuel for the shipping industry, Curr. Opin. Chem. Eng., 31 (2021) 100670.
- Carbon Free Fuel: Ammonia Policy and Industry Trends, Korea Institute of Energy Research Climate Technology Brief No.42 (2021)
- A. Klerke, C.H. Christensen, J.K. Norskov, T. Vegge, Ammonia for hydrogen storage: challenges and opportunities, J. Mater. Chem., 18 (2008) 2304.
- G. Chehade, I. Dincer, Progress in green ammonia production as potential carbon-free fuel, Fuel, 299 (2021) 120845.
- H. Zhang, L. Wang, J.V. Herle, F. Marechal, U. Desideri, Techno-economic comparison of green ammonia production processes, Appl. Energy, 259 (2020) 114135.
- A. Sanchez, M. Martin, Optimal renewable production of ammonia from water and air, J. Clean. Prod., 178 (2018) 325-342. https://doi.org/10.1016/j.jclepro.2017.12.279
- A.V. Medina, H. Xiao, M.O. Jones, W. David, P. Bowen, Ammonia for power, Prog. Energy Combust. Sci., 69 (2018) 63-102. https://doi.org/10.1016/j.pecs.2018.07.001
- O. Siddiqui, I. Dincer, Development and performance evaluation of a direct ammonia fuel cell stack, Chem. Eng. Sci., 200 (2019) 285-293. https://doi.org/10.1016/j.ces.2019.01.059
- J. Sun, D. Alam, R. Daiyan, H. Masood, T. Zhang, R. Zhou, P. J. Cullen, E. C. Lovell, A. Jalili, R. Amal, A hybrid plasma electrocatalytic process for sustainable ammonia production, Energy Environ. Sci., 14 (2021) 865-872. https://doi.org/10.1039/D0EE03769A
- S. Giddey, S. P. S. Badwal, A. Kulkarni, Review of electrochemical ammonia production technologies and materials, Int. J. Hydrogen Energy, 38 (2013) 14576-14594. https://doi.org/10.1016/j.ijhydene.2013.09.054
- H. Shen, C. Choi,J. Masa, X. Li,J. Qiu, Y.Jung, Z. Sun, Electrochemical ammonia synthesis: mechanistic understanding and catalyst design, Inside Chem., 7 (2021) 1708-1754.
- M. Negovanovic, L. Kricak, S. Milanovic, D. Nikola, S. Nikola, Ammonium nitrate explosion hazards, Undergr. Min. Eng., 27 (2015) 49-63.
- X. Vecino, M. Reig, B. Bhushan, O. Gibert, C. Valderrama, J. Cortina, Liquid fertilizer production by ammonia recovery from treated ammonia-rich regenerated streams using liquid-liquid membrane contactors, J. Chem. Eng., 360 (2019) 890-899. https://doi.org/10.1016/j.cej.2018.12.004
- M. Montazer, A. Shamei, F. Alimohammadi, Synthesis of nanosilver on polyamide fabric using silver/ammonia complex, Mater. Sci. Eng. C, 38 (2014) 170-176 https://doi.org/10.1016/j.msec.2014.01.044
- J. Yang, W. Wang, W. Xiao, Electrochemical synthesis of ammonia in molten salts, J. Energy Chem., 43 (2020) 195-207. https://doi.org/10.1016/j.jechem.2019.09.006
- A. E. Yuzbasioglu, C. Avsar, A. O. Gezerman, The current situation in the use of ammonia as a sustainable energy source and its industrial potential, Curr. Opin. Green Sustain. Chem., 5 (2022) 100307.
- A. V. Medina, F. A. Hatem, A. K. Azad, I. C. Dedoussi, M. Joannon, R. X. Fernandes, P. Glarborg, H. Hashemi, X. He, S. Mashruk, J. M. Gowan, C. M. Rouselle, A. O. Prado, A. O. Alera, I. Rossetti, B. Shu, M. Yehia, H. Xiao, M. Costa, Review on ammonia as a potential fuel: from synthesis to economics, Energy Fuels, 35 (2021) 6964-7029. https://doi.org/10.1021/acs.energyfuels.0c03685
- S. Ghavam, M. Vahdati, I. A. G. Wilson, P. Styring, Sustainable ammonia production processes, Front. Energy Res., 9 (2021) 580808
- M. Ozturk, I. Dincer, An integrated system for ammonia production from renewable hydrogen: a case study, Int. J. Energy, 46 (2021) 5918-5925.
- N. L. Trivyza, M. Cheliotis, E. Boulougouris, G. Theotokatos, Safety and reliability analysis of an ammonia-powered fuel-cell system, Safety, 7 (2021) 80.
- D. Chang, T. Rhee, K. Nam, K. Chang, D. Lee, S. Jeong, A study on availability and safety of new propulsion systems for LNG carriers, Reliab. Eng. Syst. Saf., 93 (2008) 1877-1885. https://doi.org/10.1016/j.ress.2008.03.013
- V. Radmehr, S. M. J. Koleini, M. R. Khalesi, M. R. T. Mohammadi, Ammonia leaching: a new approach of copper industry in hydrometallurgical Processes, J. Inst. Eng. (India): D., 94 (2013) 95-104. https://doi.org/10.1007/s40033-013-0029-x
- A. C. Grosse, G. W. Dicinoski, M. J. Shaw, P. R. Haddad, Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review), Hydrometallurgy, 69 (2003) 1-21. https://doi.org/10.1016/S0304-386X(02)00169-X
- Y. Ma, J. Tang, R. Wanaldi, X. Zhou, H. Wang, C. Zhou, J. Yang, A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching, J. Hazard. Mater., 402 (2021) 123491.
- S. M. Shin, N. H. Kim, J. S. Sohn, D. H. Yang, Y. H. Kim, Development of a metal recovery process from Li-ion battery wastes, Hydrometallurgy, 79 (2005) 172-181. https://doi.org/10.1016/j.hydromet.2005.06.004
- B. Ogilvie, A. S. Leal, J. Lopez, B. Poole, R. Robison, B. Berges, Alcohol-free hand sanitizer and other quaternary ammonium disinfectants quickly and effectively inactivate SARS-CoV-2, J. Hosp. Infect., 108 (2021) 142-145. https://doi.org/10.1016/j.jhin.2020.11.023
- C. P. Gerba, Quaternary ammonium biocides: efficacy in application, Appl. Environ. Microbiol., 81 (2015) 02633-14
- D. Wu, F. Lu, H. Gao, L. Shao, P. He, Mesophilic bio-liquefaction of lincomycin manufacturing biowaste: The influence of total solid content and inoculum to substrate ratio, Bioresour. Technol., 102 (2011) 5855-5862. https://doi.org/10.1016/j.biortech.2011.02.007
- M. Montazer, A. Shamei, F. Alimohammadi, Synthesizing and stabilizing silver nanoparticles on polyamide fabric using silver-ammonia/PVP/UVC, Prog. Org. Coat., 75 (2012) 379-385. https://doi.org/10.1016/j.porgcoat.2012.07.011
- C. Loftus, M. Yost, P. Sampson, E.Torres, G. Arias, V. B. Vasquez, K. Hartin, J. Armstrong, M. T. French, S. Vedal, P. Bhatti, C. Karr, Ambient ammonia exposures in an agricultural community and pediatric asthma morbidity, Epidemiol., 26 (2015) 794-801. https://doi.org/10.1097/EDE.0000000000000368
- T. Li, J. Panther, Y. Qiu, C. Liu, J. Huang, Y. Wu, P.K. Wong, T. An, S. Zhang, H.Zhao, Gas-permeable membrane-based conductivity probe capable of in situ real-time monitoring of ammonia in aquatic environments, Environ. Sci. Technol., 51 (2017) 13265-13273. https://doi.org/10.1021/acs.est.7b03552
- E. Stokstad, Ammonia pollution from farming may exact hefty health costs, Science, 343 (2014) 238.
- S. J. Zeng, D. W. Shang, M. Yu, H. Chen, H. Dong, X. Zhang, Applications and perspectives of NH3 separation and recovery with ionic liquids, Chin. J. Chem. Eng., 70 (2019) 10.
- X. Xu, Q. Xu, G. Huang, L. Wang, L. Huang, Removal of ammonia by absorption combined with electrochemical oxidation on RuO2/Ti anode, Chin. J. Chem. Eng., 67 (2016) 7.
- S. Dasarathy, R. P. Mookerjee, V. Rackayova, V. R. Thrane, B. Vairappan, P. Ott, C. F. Rose, Ammonia toxicity: from head to toe?, Metab. Brain Dis., 32 (2017) 529-538. https://doi.org/10.1007/s11011-016-9938-3
- K. R. Prasun, B. Arti, K. Bimal, K. Sarvjeet, R. Chitra, Consequence and risk assessment: case study of an ammonia storage facility, Arch. Environ. Sci, 5 (2011) 25-36.
- C. Hassan, C. Rosmani, B. Puvaneswaran, A. Raman, A. A. Mahmood, N. Zalina, F. C. Hung, N. M. Sulaiman, A. Puvaneswaran, L. Balasubramaniam, A case study of consequences analysis of ammonia transportation by rail from Gurun to Port Klang in Malaysia using safety computer Model, J. Saf. Health Environ. Res., 6 (2009) 1-19.
- S. Giddey, S. Badwal, A. Kulkarni, Review of electrochemical ammonia production technologies and materials, Int. J. Hydrog. Energy, 38 (2013) 14576-14594. https://doi.org/10.1016/j.ijhydene.2013.09.054
- P. Jha, N. S. Ramgir, P. K. Sharma, N. Datta, S. Kailasaganapathi, M. Kaur, S. P. Koiry, V. Saxena, A. K. Chauhan, A. K. Debnath, Charge transport and ammonia sensing properties of flexible polypyrrole nanosheets grown at air-liquid interface, Mater. Chem. Phys., 40 (2013) 300-306. https://doi.org/10.1016/j.matchemphys.2013.03.040
- X. Feng, Methanol-ammonia and the new energy economy, Chem. Ind. Press, (2010) 60-62.
- D. A. Jones, B. E. Wilde, Corrosion performance of some metals and alloys in liquid ammonia, Corrosion, 33 (1977) 46-50. https://doi.org/10.5006/0010-9312-33.2.46
- N. Anjana, A. Amarnath, M. Harindranathan Nair, Toxic hazards of ammonia release and population vulnerability assessment using geographical information system, J. Environ. Manage., 210 (2018) 201-209. https://doi.org/10.1016/j.jenvman.2018.01.021
- D. Strmcnik, M. Gaberscek, B. Pihlar, D. Kocar, J. Jamnik, Copper Dissolution in Ammonia Solutions: Identification of the Mechanism at Low Overpotentials, J. Electrochem. Soc., 156 (2009) 3123289.
- G. Jennings, P. E. Laibinis, Self-assembled monolayers of alkanethiols on copper provide corrosion resistance in aqueous environments, Colloids and Surfaces A: Physicochemical and on copper provide corrosion resistance in aqueous environments, Colloids Surf. A Physicochem. Eng. Asp., 116 (1996) 105-114. https://doi.org/10.1016/0927-7757(96)03626-6
- Guidelines for Ships Using Ammonia as Fuels, Korean Register, 2021.
- P. Shi, Q. Wang, Y. Xu, W. Luo, Corrosion behavior of bulk nanocrystalline copper in ammonia solution, Mater. Lett., 65 (2011) 857-859. https://doi.org/10.1016/j.matlet.2010.12.014
- E. Pugh, W. Montague, A. Westwood, Stress-corrosion cracking of copper, Corros. Sci., 6 (1966) 345-346. https://doi.org/10.1016/S0010-938X(66)80041-0
- H. H. Uhlig, D. J. Duqette, Alleged stress-corrosion cracking of pure Cu, Corros. Sci., 9 (1969) 557-558. https://doi.org/10.1016/0010-938X(69)90024-9
- E. Escalante, J. Kruger, Stress corrosion cracking of pure copper, J. Electrochem. Soc., 118 (1971) 2408247.
- F. I. Danilov, V. S. Protsenko, V. O. Gordiienko, S. C. Kwon, J. Y. Lee, M. Kim, Nanocrystalline hard chromium electrodeposition from trivalent chromium bath containing carbamide and formic acid: Structure, composition, electrochemical corrosion behavior, hardness and wear characteristics of deposits, Appl. Surf. Sci., 257 (2011) 8048.
- H. H. Sheu, M. H. Lin, S. Y. Jian, T. Y. Hong, K. H. Hou, M. D. Ger, Improve the mechanical properties and wear resistance of Cr-C thin films by adding Al2O3 particles, Surf. Coat. Technol., 350 (2018) 1036.
- A. Liang, Q. Liu, B. Zhang, L. Ni, J. Zhang, Preparation of crystalline chromium coating on cu substrate directly by DC electrodepositing from wholly environmentally acceptable Cr(III) electrolyte, Mater. Lett., 119 (2014) 131.
- K. S. Nam, K. H. Lee, S. C. Kwon, D. Y. Lee, Y. S. Song, Improved wear and corrosion resistance of chromium(III) plating by oxynitrocarburising and steam oxidation, Mater. Lett., 58 (2004) 3540.
- O. de Sanctis, L. Gomez, N. Pellegri, A. Duran, Behaviour in hot ammonia atmosphere of SiO2-coated stainless steels produced by a sol-gel procedure, Surf. Coat. Technol., 70 (1995) 251-255. https://doi.org/10.1016/0257-8972(94)02274-T
- H. Ma, Y. Berthier, P. Marcus, NH3 probing of the surface acidity of passive films on chromium, Corros. Sci., 44 (2002) 171-178. https://doi.org/10.1016/S0010-938X(01)00020-8
- G. Bouyssoux, M. Romand, H. D. Polaschegg, J. T. Calow, XPS and AES studies of anodic passive films grown on chromium electrodes in sulphuric acid baths, J. Electron. Spectrosc. Relat. Phenom., 11 (1977) 185-196. https://doi.org/10.1016/0368-2048(77)85109-8
- M. Seo, R. Saito, N. Sato, Ellipsometry and Auger Analysis of Chromium Surfaces Passivated in Acidic and Neutral Aqueous Solutions, J. Electrochem. Soc., 127 (1980) 1909.
- S. Haupt, H. H. Strehblow, The analysis of dissolved Cr3+with the rotating ring-disc technique and its application to the corrosion of Cr in the passive state, J. Electroanal. Chem., 216 (1987) 229-240. https://doi.org/10.1016/0022-0728(87)80209-7
- S. Haupt, H. H. Strehblow, The formation of the passive layer on Cr in 0.5 M H2SO4 A combined electrochemical and surface analytical study, J. Electroanal. Chem., 228 (1987) 365-392. https://doi.org/10.1016/0022-0728(87)80118-3
- T. P. Moffat, R. M. Latanision, An electrochemical and X-ray photoelectron spectroscopy study of the passive state of chromium, J. Electrochem. Soc., 139 (1992) 1869.
- T. P. Moffat, H. Yang, F. R. F. Fan, A. J. Bard, Electron-transfer reactions on passive chromium, J. Electrochem. Soc., 139 (1992) 3158.
- C. A. Melendres, M. Pankush, Y. S. Li, R. L. Knight, Surface enhanced raman spectroelectrochemical studies of the corrosion films on iron and chromium in aqueous solution environments, Electrochim. Acta, 37 (1992) 2747-2754. https://doi.org/10.1016/0013-4686(92)85202-V
- V. Maurice, W. Yang, P. Marcus, XPS and STM investigation of the passive film formed on Cr(110) single-crystal surfaces, J. Electrochem. Soc., 141 (1994) 3016.
- L. Oblonsky, T. Devine, A surface enhanced raman spectroscopic study of the passive films formed in borate buffer on iron, nickel, chromium and stainless steel, Corros. Sci., 37 (1995) 17-41. https://doi.org/10.1016/0010-938X(94)00102-C
- D. Zuili, V. Maurice, P. Marcus, In situ scanning tunneling microscopy study of the structure of the hydroxylated anodic oxide film formed on Cr(110) single-crystal surfaces, J. Phys. Chem. B, 103 (1999) 7896-7905. https://doi.org/10.1021/jp9911088
- M. M. Hukovic, M. C. Ceric, P-type and n-type behavior of chromium oxide as a function of the applied potential, J. Electrochem. Soc., 134 (1987) 2193.
- C. Sunseri, S. Piazza, F. D. Quarto, Photocurrent spectroscopic investigations of passive films on chromium, J. Electrochem. Soc., 137 (1990) 2411.
- P. C. Searson, R. M. Latanision, A photoelectrochemical study of the passive film on chromium, Electrochim. Acta, 35 (1990) 445-450. https://doi.org/10.1016/0013-4686(90)87026-X
- M. Bojinov, G. Fabricius, T. Laitinen, T. Saario, G. Sundholm, Conduction mechanism of the anodic film on chromium in acidic sulphate solutions, Electrochim. Acta, 44 (1998) 247-261. https://doi.org/10.1016/S0013-4686(98)00169-8