DOI QR코드

DOI QR Code

A Study on the Utilization Status and Corrosion Damage with Ammonia Characteristics

암모니아의 특성에 따른 활용 현황과 부식 손상에 대한 고찰

  • Seung-Jun Lee (Division of Marine Engineering, Kunsan National University)
  • 이승준 (군산대학교 ONSE대학 기관공학전공)
  • Received : 2023.04.19
  • Accepted : 2023.04.27
  • Published : 2023.04.30

Abstract

Recently, ammonia has emerged as an alternative energy source that can reduce carbon emissions in various industries. Ammonia is used as a fuel in internal combustion engines because it contains no carbon in its components and does not emit any carbon when burned. It is also used in various fields such as fertilizer production, refrigeration, cleaning and disinfection, and drug manufacturing due to its unique characteristics, such as high volatility and easy solubility in water. However, it is highly corrosive to metals and is a toxic gas that can pose a risk to human health, so caution must be exercised when using it. In particular, stress corrosion cracking may occur in containers or manufacturing facilities made of carbon-manganese steel or nickel steel, so special care is needed. As ammonia has emerged as an alternative fuel for reducing carbon emissions, there is a need for a rapid response. Therefore, based on a deep understanding of the causes and mechanisms of ammonia corrosion, it is important to develop new corrosion inhibitors, improve corrosion monitoring and prediction systems, and study corrosion prevention design.

Keywords

Acknowledgement

이 논문은 2021년 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(2,100마력급 LNG- 암모니아 혼소 엔진 개발, 과제번호 20210606).

References

  1. P. Dimitriou, R. Javaid, A review of ammonia as a compression ignition engine fuel, Int. J. Hydrogen Energy, 45 (2020) 7098-7118. https://doi.org/10.1016/j.ijhydene.2019.12.209
  2. A. Pearson, Refrigeration with ammonia, Int. J. Refrig., 31 (2008) 545-551. https://doi.org/10.1016/j.ijrefrig.2007.11.011
  3. A.A. Lima, G.D. Leite, A.A. Ochoa, C.A. Santos, J.A. Costa, P.S. Michima, A.M. Caldas, Absorption refrigeration systems based on ammonia as refrigerant using different absorbents: review and applications, Energies, 14 (2020) 48.
  4. R. K. Dreepaul, A study of alternative refrigerants for the refrigeration and air conditioning sector in mauritius, Earth Environ. Sci., 93 (2017) 012054.
  5. S. J. Benson, C. J. Lennard, P. Maynard, D. M. Hill, A. S. Andrew, C. Roux, Forensic analysis of explosives using isotope ratio mass spectrometry (IRMS) - discrimination of ammonium nitrate sources, Sci. Justice., 49 (2009) 73-80. https://doi.org/10.1016/j.scijus.2009.04.005
  6. G. Chehade, I. Dincer, Progress in green ammonia production as in green ammonia production as potential carbon-free fuel, Fuel, 299 (2021) 120845.
  7. J. Guo, P. Chen, Catalyst: NH3 as an Energy Carrier, Chem., 3 (2017) 709-712. https://doi.org/10.1016/j.chempr.2017.10.004
  8. F. Chang, W. Gao, J. Guo, P. Chen, Emerging materials and methods toward ammonia-based energy storage and conversion, Adv. Mater., 33 (2021) 2005721.
  9. W. S. Chai, Y. Bao, P. Jin, G. Tang, L. Zhou, A review on ammonia, ammonia-hydrogen and ammonia-methane fuels, Renewable Sustainable Energy Rev., 147 (2021) 111254.
  10. C. Zou, B. Xiong, X. Huaqing, D. Zheng, The role of new energy in carbon neutral, Pet. Explor. Dev., 48 (2021) 411-420. https://doi.org/10.1016/S1876-3804(21)60039-3
  11. M. Sonachalam, P. Paulpandian, V. Manieniyan, Emission reduction in diesel engine with acetylene gas and biodiesel using inlet manifold injection, Clean Technol. Environ. Policy, 22 (2020) 2177-2191. https://doi.org/10.1007/s10098-020-01968-y
  12. M. Sonachalam, V. Manieniyan, Impact of secondary fuel injector in various distance on direct injection diesel engine using acetylene-bio diesel in reactivity controlled compression ignition mode, Energy Sources Part A Recovery Util. Environ. Eff., 22 (2020) 1810177.
  13. X. Xu, E. Liu, N. Zhu, F. Liu, F. Qian, Review of the current status of ammonia-blended hydrogen fuel engine development, Energies, 15 (2022) 1023.
  14. M.C. Chiong, H.S. Kang, N.M.R. Shaharuddin, S. Mat, L.K. Quen, K.H. Ten, M. C. Ong, Challenges and opportunities of marine propulsion with alternative fuels, Renew Sustain. Energy Rev., 149 (2021) 111397.
  15. F.Y.A. Aboosi, M.M.E. Halwagi, M. Margaux, R.B. Nielsen, Renewable ammonia as an alternative fuel for the shipping industry, Curr. Opin. Chem. Eng., 31 (2021) 100670.
  16. Carbon Free Fuel: Ammonia Policy and Industry Trends, Korea Institute of Energy Research Climate Technology Brief No.42 (2021)
  17. A. Klerke, C.H. Christensen, J.K. Norskov, T. Vegge, Ammonia for hydrogen storage: challenges and opportunities, J. Mater. Chem., 18 (2008) 2304.
  18. G. Chehade, I. Dincer, Progress in green ammonia production as potential carbon-free fuel, Fuel, 299 (2021) 120845.
  19. H. Zhang, L. Wang, J.V. Herle, F. Marechal, U. Desideri, Techno-economic comparison of green ammonia production processes, Appl. Energy, 259 (2020) 114135.
  20. A. Sanchez, M. Martin, Optimal renewable production of ammonia from water and air, J. Clean. Prod., 178 (2018) 325-342. https://doi.org/10.1016/j.jclepro.2017.12.279
  21. A.V. Medina, H. Xiao, M.O. Jones, W. David, P. Bowen, Ammonia for power, Prog. Energy Combust. Sci., 69 (2018) 63-102. https://doi.org/10.1016/j.pecs.2018.07.001
  22. O. Siddiqui, I. Dincer, Development and performance evaluation of a direct ammonia fuel cell stack, Chem. Eng. Sci., 200 (2019) 285-293. https://doi.org/10.1016/j.ces.2019.01.059
  23. J. Sun, D. Alam, R. Daiyan, H. Masood, T. Zhang, R. Zhou, P. J. Cullen, E. C. Lovell, A. Jalili, R. Amal, A hybrid plasma electrocatalytic process for sustainable ammonia production, Energy Environ. Sci., 14 (2021) 865-872. https://doi.org/10.1039/D0EE03769A
  24. S. Giddey, S. P. S. Badwal, A. Kulkarni, Review of electrochemical ammonia production technologies and materials, Int. J. Hydrogen Energy, 38 (2013) 14576-14594. https://doi.org/10.1016/j.ijhydene.2013.09.054
  25. H. Shen, C. Choi,J. Masa, X. Li,J. Qiu, Y.Jung, Z. Sun, Electrochemical ammonia synthesis: mechanistic understanding and catalyst design, Inside Chem., 7 (2021) 1708-1754.
  26. M. Negovanovic, L. Kricak, S. Milanovic, D. Nikola, S. Nikola, Ammonium nitrate explosion hazards, Undergr. Min. Eng., 27 (2015) 49-63.
  27. X. Vecino, M. Reig, B. Bhushan, O. Gibert, C. Valderrama, J. Cortina, Liquid fertilizer production by ammonia recovery from treated ammonia-rich regenerated streams using liquid-liquid membrane contactors, J. Chem. Eng., 360 (2019) 890-899. https://doi.org/10.1016/j.cej.2018.12.004
  28. M. Montazer, A. Shamei, F. Alimohammadi, Synthesis of nanosilver on polyamide fabric using silver/ammonia complex, Mater. Sci. Eng. C, 38 (2014) 170-176 https://doi.org/10.1016/j.msec.2014.01.044
  29. J. Yang, W. Wang, W. Xiao, Electrochemical synthesis of ammonia in molten salts, J. Energy Chem., 43 (2020) 195-207. https://doi.org/10.1016/j.jechem.2019.09.006
  30. A. E. Yuzbasioglu, C. Avsar, A. O. Gezerman, The current situation in the use of ammonia as a sustainable energy source and its industrial potential, Curr. Opin. Green Sustain. Chem., 5 (2022) 100307.
  31. A. V. Medina, F. A. Hatem, A. K. Azad, I. C. Dedoussi, M. Joannon, R. X. Fernandes, P. Glarborg, H. Hashemi, X. He, S. Mashruk, J. M. Gowan, C. M. Rouselle, A. O. Prado, A. O. Alera, I. Rossetti, B. Shu, M. Yehia, H. Xiao, M. Costa, Review on ammonia as a potential fuel: from synthesis to economics, Energy Fuels, 35 (2021) 6964-7029. https://doi.org/10.1021/acs.energyfuels.0c03685
  32. S. Ghavam, M. Vahdati, I. A. G. Wilson, P. Styring, Sustainable ammonia production processes, Front. Energy Res., 9 (2021) 580808
  33. M. Ozturk, I. Dincer, An integrated system for ammonia production from renewable hydrogen: a case study, Int. J. Energy, 46 (2021) 5918-5925.
  34. N. L. Trivyza, M. Cheliotis, E. Boulougouris, G. Theotokatos, Safety and reliability analysis of an ammonia-powered fuel-cell system, Safety, 7 (2021) 80.
  35. D. Chang, T. Rhee, K. Nam, K. Chang, D. Lee, S. Jeong, A study on availability and safety of new propulsion systems for LNG carriers, Reliab. Eng. Syst. Saf., 93 (2008) 1877-1885. https://doi.org/10.1016/j.ress.2008.03.013
  36. V. Radmehr, S. M. J. Koleini, M. R. Khalesi, M. R. T. Mohammadi, Ammonia leaching: a new approach of copper industry in hydrometallurgical Processes, J. Inst. Eng. (India): D., 94 (2013) 95-104. https://doi.org/10.1007/s40033-013-0029-x
  37. A. C. Grosse, G. W. Dicinoski, M. J. Shaw, P. R. Haddad, Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review), Hydrometallurgy, 69 (2003) 1-21. https://doi.org/10.1016/S0304-386X(02)00169-X
  38. Y. Ma, J. Tang, R. Wanaldi, X. Zhou, H. Wang, C. Zhou, J. Yang, A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching, J. Hazard. Mater., 402 (2021) 123491.
  39. S. M. Shin, N. H. Kim, J. S. Sohn, D. H. Yang, Y. H. Kim, Development of a metal recovery process from Li-ion battery wastes, Hydrometallurgy, 79 (2005) 172-181. https://doi.org/10.1016/j.hydromet.2005.06.004
  40. B. Ogilvie, A. S. Leal, J. Lopez, B. Poole, R. Robison, B. Berges, Alcohol-free hand sanitizer and other quaternary ammonium disinfectants quickly and effectively inactivate SARS-CoV-2, J. Hosp. Infect., 108 (2021) 142-145. https://doi.org/10.1016/j.jhin.2020.11.023
  41. C. P. Gerba, Quaternary ammonium biocides: efficacy in application, Appl. Environ. Microbiol., 81 (2015) 02633-14
  42. D. Wu, F. Lu, H. Gao, L. Shao, P. He, Mesophilic bio-liquefaction of lincomycin manufacturing biowaste: The influence of total solid content and inoculum to substrate ratio, Bioresour. Technol., 102 (2011) 5855-5862. https://doi.org/10.1016/j.biortech.2011.02.007
  43. M. Montazer, A. Shamei, F. Alimohammadi, Synthesizing and stabilizing silver nanoparticles on polyamide fabric using silver-ammonia/PVP/UVC, Prog. Org. Coat., 75 (2012) 379-385. https://doi.org/10.1016/j.porgcoat.2012.07.011
  44. C. Loftus, M. Yost, P. Sampson, E.Torres, G. Arias, V. B. Vasquez, K. Hartin, J. Armstrong, M. T. French, S. Vedal, P. Bhatti, C. Karr, Ambient ammonia exposures in an agricultural community and pediatric asthma morbidity, Epidemiol., 26 (2015) 794-801. https://doi.org/10.1097/EDE.0000000000000368
  45. T. Li, J. Panther, Y. Qiu, C. Liu, J. Huang, Y. Wu, P.K. Wong, T. An, S. Zhang, H.Zhao, Gas-permeable membrane-based conductivity probe capable of in situ real-time monitoring of ammonia in aquatic environments, Environ. Sci. Technol., 51 (2017) 13265-13273. https://doi.org/10.1021/acs.est.7b03552
  46. E. Stokstad, Ammonia pollution from farming may exact hefty health costs, Science, 343 (2014) 238.
  47. S. J. Zeng, D. W. Shang, M. Yu, H. Chen, H. Dong, X. Zhang, Applications and perspectives of NH3 separation and recovery with ionic liquids, Chin. J. Chem. Eng., 70 (2019) 10.
  48. X. Xu, Q. Xu, G. Huang, L. Wang, L. Huang, Removal of ammonia by absorption combined with electrochemical oxidation on RuO2/Ti anode, Chin. J. Chem. Eng., 67 (2016) 7.
  49. S. Dasarathy, R. P. Mookerjee, V. Rackayova, V. R. Thrane, B. Vairappan, P. Ott, C. F. Rose, Ammonia toxicity: from head to toe?, Metab. Brain Dis., 32 (2017) 529-538. https://doi.org/10.1007/s11011-016-9938-3
  50. K. R. Prasun, B. Arti, K. Bimal, K. Sarvjeet, R. Chitra, Consequence and risk assessment: case study of an ammonia storage facility, Arch. Environ. Sci, 5 (2011) 25-36.
  51. C. Hassan, C. Rosmani, B. Puvaneswaran, A. Raman, A. A. Mahmood, N. Zalina, F. C. Hung, N. M. Sulaiman, A. Puvaneswaran, L. Balasubramaniam, A case study of consequences analysis of ammonia transportation by rail from Gurun to Port Klang in Malaysia using safety computer Model, J. Saf. Health Environ. Res., 6 (2009) 1-19.
  52. S. Giddey, S. Badwal, A. Kulkarni, Review of electrochemical ammonia production technologies and materials, Int. J. Hydrog. Energy, 38 (2013) 14576-14594. https://doi.org/10.1016/j.ijhydene.2013.09.054
  53. P. Jha, N. S. Ramgir, P. K. Sharma, N. Datta, S. Kailasaganapathi, M. Kaur, S. P. Koiry, V. Saxena, A. K. Chauhan, A. K. Debnath, Charge transport and ammonia sensing properties of flexible polypyrrole nanosheets grown at air-liquid interface, Mater. Chem. Phys., 40 (2013) 300-306. https://doi.org/10.1016/j.matchemphys.2013.03.040
  54. X. Feng, Methanol-ammonia and the new energy economy, Chem. Ind. Press, (2010) 60-62.
  55. D. A. Jones, B. E. Wilde, Corrosion performance of some metals and alloys in liquid ammonia, Corrosion, 33 (1977) 46-50. https://doi.org/10.5006/0010-9312-33.2.46
  56. N. Anjana, A. Amarnath, M. Harindranathan Nair, Toxic hazards of ammonia release and population vulnerability assessment using geographical information system, J. Environ. Manage., 210 (2018) 201-209. https://doi.org/10.1016/j.jenvman.2018.01.021
  57. D. Strmcnik, M. Gaberscek, B. Pihlar, D. Kocar, J. Jamnik, Copper Dissolution in Ammonia Solutions: Identification of the Mechanism at Low Overpotentials, J. Electrochem. Soc., 156 (2009) 3123289.
  58. G. Jennings, P. E. Laibinis, Self-assembled monolayers of alkanethiols on copper provide corrosion resistance in aqueous environments, Colloids and Surfaces A: Physicochemical and on copper provide corrosion resistance in aqueous environments, Colloids Surf. A Physicochem. Eng. Asp., 116 (1996) 105-114. https://doi.org/10.1016/0927-7757(96)03626-6
  59. Guidelines for Ships Using Ammonia as Fuels, Korean Register, 2021.
  60. P. Shi, Q. Wang, Y. Xu, W. Luo, Corrosion behavior of bulk nanocrystalline copper in ammonia solution, Mater. Lett., 65 (2011) 857-859. https://doi.org/10.1016/j.matlet.2010.12.014
  61. E. Pugh, W. Montague, A. Westwood, Stress-corrosion cracking of copper, Corros. Sci., 6 (1966) 345-346. https://doi.org/10.1016/S0010-938X(66)80041-0
  62. H. H. Uhlig, D. J. Duqette, Alleged stress-corrosion cracking of pure Cu, Corros. Sci., 9 (1969) 557-558. https://doi.org/10.1016/0010-938X(69)90024-9
  63. E. Escalante, J. Kruger, Stress corrosion cracking of pure copper, J. Electrochem. Soc., 118 (1971) 2408247.
  64. F. I. Danilov, V. S. Protsenko, V. O. Gordiienko, S. C. Kwon, J. Y. Lee, M. Kim, Nanocrystalline hard chromium electrodeposition from trivalent chromium bath containing carbamide and formic acid: Structure, composition, electrochemical corrosion behavior, hardness and wear characteristics of deposits, Appl. Surf. Sci., 257 (2011) 8048.
  65. H. H. Sheu, M. H. Lin, S. Y. Jian, T. Y. Hong, K. H. Hou, M. D. Ger, Improve the mechanical properties and wear resistance of Cr-C thin films by adding Al2O3 particles, Surf. Coat. Technol., 350 (2018) 1036.
  66. A. Liang, Q. Liu, B. Zhang, L. Ni, J. Zhang, Preparation of crystalline chromium coating on cu substrate directly by DC electrodepositing from wholly environmentally acceptable Cr(III) electrolyte, Mater. Lett., 119 (2014) 131.
  67. K. S. Nam, K. H. Lee, S. C. Kwon, D. Y. Lee, Y. S. Song, Improved wear and corrosion resistance of chromium(III) plating by oxynitrocarburising and steam oxidation, Mater. Lett., 58 (2004) 3540.
  68. O. de Sanctis, L. Gomez, N. Pellegri, A. Duran, Behaviour in hot ammonia atmosphere of SiO2-coated stainless steels produced by a sol-gel procedure, Surf. Coat. Technol., 70 (1995) 251-255. https://doi.org/10.1016/0257-8972(94)02274-T
  69. H. Ma, Y. Berthier, P. Marcus, NH3 probing of the surface acidity of passive films on chromium, Corros. Sci., 44 (2002) 171-178. https://doi.org/10.1016/S0010-938X(01)00020-8
  70. G. Bouyssoux, M. Romand, H. D. Polaschegg, J. T. Calow, XPS and AES studies of anodic passive films grown on chromium electrodes in sulphuric acid baths, J. Electron. Spectrosc. Relat. Phenom., 11 (1977) 185-196. https://doi.org/10.1016/0368-2048(77)85109-8
  71. M. Seo, R. Saito, N. Sato, Ellipsometry and Auger Analysis of Chromium Surfaces Passivated in Acidic and Neutral Aqueous Solutions, J. Electrochem. Soc., 127 (1980) 1909.
  72. S. Haupt, H. H. Strehblow, The analysis of dissolved Cr3+with the rotating ring-disc technique and its application to the corrosion of Cr in the passive state, J. Electroanal. Chem., 216 (1987) 229-240. https://doi.org/10.1016/0022-0728(87)80209-7
  73. S. Haupt, H. H. Strehblow, The formation of the passive layer on Cr in 0.5 M H2SO4 A combined electrochemical and surface analytical study, J. Electroanal. Chem., 228 (1987) 365-392. https://doi.org/10.1016/0022-0728(87)80118-3
  74. T. P. Moffat, R. M. Latanision, An electrochemical and X-ray photoelectron spectroscopy study of the passive state of chromium, J. Electrochem. Soc., 139 (1992) 1869.
  75. T. P. Moffat, H. Yang, F. R. F. Fan, A. J. Bard, Electron-transfer reactions on passive chromium, J. Electrochem. Soc., 139 (1992) 3158.
  76. C. A. Melendres, M. Pankush, Y. S. Li, R. L. Knight, Surface enhanced raman spectroelectrochemical studies of the corrosion films on iron and chromium in aqueous solution environments, Electrochim. Acta, 37 (1992) 2747-2754. https://doi.org/10.1016/0013-4686(92)85202-V
  77. V. Maurice, W. Yang, P. Marcus, XPS and STM investigation of the passive film formed on Cr(110) single-crystal surfaces, J. Electrochem. Soc., 141 (1994) 3016.
  78. L. Oblonsky, T. Devine, A surface enhanced raman spectroscopic study of the passive films formed in borate buffer on iron, nickel, chromium and stainless steel, Corros. Sci., 37 (1995) 17-41. https://doi.org/10.1016/0010-938X(94)00102-C
  79. D. Zuili, V. Maurice, P. Marcus, In situ scanning tunneling microscopy study of the structure of the hydroxylated anodic oxide film formed on Cr(110) single-crystal surfaces, J. Phys. Chem. B, 103 (1999) 7896-7905. https://doi.org/10.1021/jp9911088
  80. M. M. Hukovic, M. C. Ceric, P-type and n-type behavior of chromium oxide as a function of the applied potential, J. Electrochem. Soc., 134 (1987) 2193.
  81. C. Sunseri, S. Piazza, F. D. Quarto, Photocurrent spectroscopic investigations of passive films on chromium, J. Electrochem. Soc., 137 (1990) 2411.
  82. P. C. Searson, R. M. Latanision, A photoelectrochemical study of the passive film on chromium, Electrochim. Acta, 35 (1990) 445-450. https://doi.org/10.1016/0013-4686(90)87026-X
  83. M. Bojinov, G. Fabricius, T. Laitinen, T. Saario, G. Sundholm, Conduction mechanism of the anodic film on chromium in acidic sulphate solutions, Electrochim. Acta, 44 (1998) 247-261. https://doi.org/10.1016/S0013-4686(98)00169-8