• 제목/요약/키워드: Fractional Polynomials

검색결과 14건 처리시간 0.027초

FRACTIONAL EULER'S INTEGRAL OF FIRST AND SECOND KINDS. APPLICATION TO FRACTIONAL HERMITE'S POLYNOMIALS AND TO PROBABILITY DENSITY OF FRACTIONAL ORDER

  • Jumarie, Guy
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.257-273
    • /
    • 2010
  • One can construct a theory of probability of fractional order in which the exponential function is replaced by the Mittag-Leffler function. In this framework, it seems of interest to generalize some useful classical mathematical tools, so that they are more suitable in fractional calculus. After a short background on fractional calculus based on modified Riemann Liouville derivative, one summarizes some definitions on probability density of fractional order (for the motive), and then one introduces successively fractional Euler's integrals (first and second kind) and fractional Hermite polynomials. Some properties of the Gaussian density of fractional order are exhibited. The fractional probability so introduced exhibits some relations with quantum probability.

SOME COMPOSITION FORMULAS OF JACOBI TYPE ORTHOGONAL POLYNOMIALS

  • Malik, Pradeep;Mondal, Saiful R.
    • 대한수학회논문집
    • /
    • 제32권3호
    • /
    • pp.677-688
    • /
    • 2017
  • The composition of Jacobi type finite classes of the classical orthogonal polynomials with two generalized Riemann-Liouville fractional derivatives are considered. The outcomes are expressed in terms of generalized Wright function or generalized hypergeometric function. Similar composition formulas are also obtained by considering the generalized Riemann-Liouville and $Erd{\acute{e}}yi-Kober$ fractional integral operators.

Fractional Derivative Associated with the Multivariable Polynomials

  • Chaurasia, Vinod Bihari Lal;Shekhawat, Ashok Singh
    • Kyungpook Mathematical Journal
    • /
    • 제47권4호
    • /
    • pp.495-500
    • /
    • 2007
  • The aim of this paper is to derive a fractional derivative of the multivariable H-function of Srivastava and Panda [7], associated with a general class of multivariable polynomials of Srivastava [4] and the generalized Lauricella functions of Srivastava and Daoust [9]. Certain special cases have also been discussed. The results derived here are of a very general nature and hence encompass several cases of interest hitherto scattered in the literature.

  • PDF

FRACTIONAL CALCULUS FORMULAS INVOLVING $\bar{H}$-FUNCTION AND SRIVASTAVA POLYNOMIALS

  • Kumar, Dinesh
    • 대한수학회논문집
    • /
    • 제31권4호
    • /
    • pp.827-844
    • /
    • 2016
  • Here, in this paper, we aim at establishing some new unified integral and differential formulas associated with the $\bar{H}$-function. Each of these formula involves a product of the $\bar{H}$-function and Srivastava polynomials with essentially arbitrary coefficients and the results are obtained in terms of two variables $\bar{H}$-function. By assigning suitably special values to these coefficients, the main results can be reduced to the corresponding integral formulas involving the classical orthogonal polynomials including, for example, Hermite, Jacobi, Legendre and Laguerre polynomials. Furthermore, the $\bar{H}$-function occurring in each of main results can be reduced, under various special cases.

Some Theorems Connecting the Unified Fractional Integral Operators and the Laplace Transform

  • Soni, R. C.;Singh, Deepika
    • Kyungpook Mathematical Journal
    • /
    • 제45권2호
    • /
    • pp.153-159
    • /
    • 2005
  • In the present paper, we obtain two Theorems connecting the unified fractional integral operators and the Laplace transform. Due to the presence of a general class of polynomials, the multivariable H-function and general functions ${\theta}$ and ${\phi}$ in the kernels of our operators, a large number of (new and known) interesting results involving simpler polynomials (which are special cases of a general class of polynomials) and special functions involving one or more variables (which are particular cases of the multivariable H-function) obtained by several authors and hitherto lying scattered in the literature follow as special cases of our findings. Thus the Theorems obtained by Srivastava et al. [9] follow as simple special cases of our findings.

  • PDF

GEGENBAUER WAVELETS OPERATIONAL MATRIX METHOD FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • UR REHMAN, MUJEEB;SAEED, UMER
    • 대한수학회지
    • /
    • 제52권5호
    • /
    • pp.1069-1096
    • /
    • 2015
  • In this article we introduce a numerical method, named Gegenbauer wavelets method, which is derived from conventional Gegenbauer polynomials, for solving fractional initial and boundary value problems. The operational matrices are derived and utilized to reduce the linear fractional differential equation to a system of algebraic equations. We perform the convergence analysis for the Gegenbauer wavelets method. We also combine Gegenbauer wavelets operational matrix method with quasilinearization technique for solving fractional nonlinear differential equation. Quasilinearization technique is used to discretize the nonlinear fractional ordinary differential equation and then the Gegenbauer wavelet method is applied to discretized fractional ordinary differential equations. In each iteration of quasilinearization technique, solution is updated by the Gegenbauer wavelet method. Numerical examples are provided to illustrate the efficiency and accuracy of the methods.

FRACTIONAL CHEBYSHEV FINITE DIFFERENCE METHOD FOR SOLVING THE FRACTIONAL BVPS

  • Khader, M.M.;Hendy, A.S.
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.299-309
    • /
    • 2013
  • In this paper, we introduce a new numerical technique which we call fractional Chebyshev finite difference method (FChFD). The algorithm is based on a combination of the useful properties of Chebyshev polynomials approximation and finite difference method. We tested this technique to solve numerically fractional BVPs. The proposed technique is based on using matrix operator expressions which applies to the differential terms. The operational matrix method is derived in our approach in order to approximate the fractional derivatives. This operational matrix method can be regarded as a non-uniform finite difference scheme. The error bound for the fractional derivatives is introduced. The fractional derivatives are presented in terms of Caputo sense. The application of the method to fractional BVPs leads to algebraic systems which can be solved by an appropriate method. Several numerical examples are provided to confirm the accuracy and the effectiveness of the proposed method.

Fredholm Type Integral Equations and Certain Polynomials

  • Chaurasia, V.B.L.;Shekhawat, Ashok Singh
    • Kyungpook Mathematical Journal
    • /
    • 제45권4호
    • /
    • pp.471-480
    • /
    • 2005
  • This paper deals with some useful methods of solving the one-dimensional integral equation of Fredholm type. Application of the reduction techniques with a view to inverting a class of integral equation with Lauricella function in the kernel, Riemann-Liouville fractional integral operators as well as Weyl operators have been made to reduce to this class to generalized Stieltjes transform and inversion of which yields solution of the integral equation. Use of Mellin transform technique has also been made to solve the Fredholm integral equation pertaining to certain polynomials and H-functions.

  • PDF

UNIVARIATE LEFT FRACTIONAL POLYNOMIAL HIGH ORDER MONOTONE APPROXIMATION

  • Anastassiou, George A.
    • 대한수학회보
    • /
    • 제52권2호
    • /
    • pp.593-601
    • /
    • 2015
  • Let $f{\in}C^r$ ([-1,1]), $r{\geq}0$ and let $L^*$ be a linear left fractional differential operator such that $L^*$ $(f){\geq}0$ throughout [0, 1]. We can find a sequence of polynomials $Q_n$ of degree ${\leq}n$ such that $L^*$ $(Q_n){\geq}0$ over [0, 1], furthermore f is approximated left fractionally and simulta-neously by $Q_n$ on [-1, 1]. The degree of these restricted approximations is given via inequalities using a higher order modulus of smoothness for $f^{(r)}$.